當前位置:首頁 » 基礎知識 » 數學六年級上冊北師大版第五單元知識點
擴展閱讀
軒逸經典怎麼睡覺舒服 2025-01-16 02:38:49
上海亞先教育待遇如何 2025-01-16 02:29:33
談談如何推進主題教育 2025-01-16 02:29:32

數學六年級上冊北師大版第五單元知識點

發布時間: 2022-07-26 01:05:42

⑴ 小學六年級上冊數學必考知識點有哪些

第一單元分數乘法

(一)分數乘法意義:

1、分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。"分數乘整數"指的是第二個因數必須是整數,不能是分數。

2、一個數乘分數的意義就是求一個數的幾分之幾是多少。

"一個數乘分數"指的是第二個因數必須是分數,不能是整數。(第一個因數是什麼都可以)

(二)分數乘法計演算法則:

1、分數乘整數的運演算法則是:分子與整數相乘,分母不變。

(1)為了計算簡便能約分的可先約分再計算。(整數和分母約分)(2)約分是用整數和下面的分母約掉最大公因數。(整數千萬不能與分母相乘,計算結果必須是最簡分數)。

2、分數乘分數的運演算法則是:用分子相乘的積做分子,分母相乘的積做分母。(分子乘分子,分母乘分母)

(1)如果分數乘法算式中含有帶分數,要先把帶分數化成假分數再計算。

(2)分數化簡的方法是:分子、分母同時除以它們的最大公因數。

(3)在乘的過程中約分,是把分子、分母中,兩個可以約分的數先劃去,再分別在它們的上、下方寫出約分後的數。(約分後分子和分母必須不再含有公因數,這樣計算後的結果才是最簡單分數)。

(4)分數的基本性質:分子、分母同時乘或者除以相同的數(0除外),分數的大小不變。

(三)積與因數的關系:

一個數(0除外)乘大於1的數,積大於這個數。a×b=c,當b >1時,c>a。

一個數(0除外)乘小於1的數,積小於這個數。a×b=c,當b <1時,c<a(b≠0)。

一個數(0除外)乘等於1的數,積等於這個數。a×b=c,當b=1時,c=a。

在進行因數與積的大小比較時,要注意因數為0時的特殊情況。

(四)分數乘法混合運算

1、分數乘法混合運算順序與整數相同,先乘、除後加、減,有括弧的先算括弧裡面的,再算括弧外面的。

2、整數乘法運算定律對分數乘法同樣適用;運算定律可以使一些計算簡便。

乘法交換律:a×b=b×a乘法結合律:(a×b)×c=a×(b×c)

乘法分配律:a×(b±c)=a×b±a×c

(五)倒數的意義:乘積為1的兩個數互為倒數。

1、倒數是兩個數的關系,它們互相依存,不能單獨存在。單獨一個數不能稱為倒數。(必須說清誰是誰的倒數)

2、判斷兩個數是否互為倒數的唯一標準是:兩數相乘的積是否為"1"。例如:a×b=1則a、b互為倒數。

3、求倒數的方法:①求分數的倒數:交換分子、分母的位置。

②求整數的倒數:整數分之1。③求帶分數的倒數:先化成假分數,再求倒數。

④求小數的倒數:先化成分數再求倒數。

4、1的倒數是它本身,因為1×1=1

0沒有倒數,因為任何數乘0積都是0,且0不能作分母。

5、真分數的倒數是假分數,真分數的倒數大於1,也大於它本身。

假分數的倒數小於或等於1。帶分數的倒數小於1。

(六)分數乘法應用題--用分數乘法解決問題

1、求一個數的幾分之幾是多少?(用乘法)

已知單位"1"的量,求單位"1"的量的幾分之幾是多少,用單位"1"的量與分數相乘。

2、巧找單位"1"的量:在含有分數(分率)的語句中,分率前面的量就是單位"1"對應的量,或者"占""是""比"字後面的量是單位"1"。

3、什麼是速度?

速度是單位時間內行駛的路程。速度=路程÷時間時間=路程÷速度路程=速度×時間

單位時間指的是1小時1分鍾1秒等這樣的大小為1的時間單位,每分鍾、每小時、每秒鍾等。

4、求甲比乙多(少)幾分之幾?

多:(甲-乙)÷乙少:(乙-甲)÷乙

第二單元位置與方向(二)1、什麼是數對?

數對:由兩個數組成,中間用逗號隔開,用括弧括起來。括弧裡面的數由左至右為列數和行數,即"先列後行"。

數對的作用:確定一個點的位置。經度和緯度就是這個原理。

2、確定物體位置的方法:

(1)、先找觀測點;(2)、再定方向(看方向夾角的度數);(3)、最後確定距離(看比例尺)。

描繪路線圖的關鍵是選好觀測點,建立方向標,確定方向和路程。

位置關系的相對性:兩地的位置具有相對性在敘述兩地的位置關系時,觀測點不同,敘述的方向正好相反,而度數和距離正好相等。

相對位置:東--西;南--北;南偏東--北偏西。

第三單元分數的除法

一、分數除法的意義:分數除法是分數乘法的逆運算,已知兩個數的積與其中一個因數,求另一個因數的運算。

二、分數除法計演算法則:除以一個數(0除外),等於乘上這個數的倒數。

1、被除數÷除數=被除數×除數的倒數。

2、除法轉化成乘法時,被除數一定不能變,"÷"變成"×",除數變成它的倒數。

3、分數除法算式中出現小數、帶分數時要先化成分數、假分數再計算。

4、被除數與商的變化規律:

①除以大於1的數,商小於被除數:a÷b=c 當b>1時,c<a (a≠0)

②除以小於1的數,商大於被除數:a÷b=c 當b<1時,c>a (a≠0 b≠0)

③除以等於1的數,商等於被除數:a÷b=c當b=1時,c=a

三、分數除法混合運算

1、混合運算用梯等式計算,等號寫在第一個數字的左下角。

2、運算順序:

①連除:同級運算,按照從左往右的順序進行計算;或者先把所有除法轉化成乘法再計算;或者依據"除以幾個數,等於乘上這幾個數的積"的簡便方法計算。加、減法為一級運算,乘、除法為二級運算。

②混合運算:沒有括弧的先乘、除後加、減,有括弧的先算括弧裡面,再算括弧外面。

(a±b)÷c=a÷c±b÷c

第四單元比

比:兩個數相除也叫兩個數的比

1、比式中,比號(∶)前面的數叫前項,比號後面的項叫做後項,比號相當於除號,比的前項除以後項的商叫做比值。

連比如:3:4:5讀作:3比4比5

2、比表示的是兩個數的關系,可以用分數表示,寫成分數的形式,讀作幾比幾。

例:12∶20==12÷20==0.612∶20讀作:12比20

區分比和比值:比值是一個數,通常用分數表示,也可以是整數、小數。

比是一個式子,表示兩個數的關系,可以寫成比,也可以寫成分數的形式。

3、比的基本性質:比的前項和後項同時乘以或除以相同的數(0除外),比值不變。

4、化簡比:化簡之後結果還是一個比,不是一個數。

(1)、用比的前項和後項同時除以它們的最大公約數。

(2)、兩個分數的比,用前項後項同時乘分母的最小公倍數,再按化簡整數比的方法來化簡。也可以求出比值再寫成比的形式。

(3)、兩個小數的比,向右移動小數點的位置,也是先化成整數比。

5、求比值:把比號寫成除號再計算,結果是一個數(或分數),相當於商,不是比。

6、比和除法、分數的區別:

除法:被除數除號(÷)除數(不能為0)商不變性質除法是一種運算

分數:分子分數線(-)分母(不能為0)分數的基本性質分數是一個數

比:前項比號(∶)後項(不能為0)比的基本性質比表示兩個數的關系

商不變性質:被除數和除數同時乘或除以相同的數(0除外),商不變。

分數的基本性質:分子和分母同時乘或除以相同的數(0除外),分數的大小不變。

分數除法和比的應用

1、已知單位"1"的量用乘法。

2、未知單位"1"的量用除法。

3、分數應用題基本數量關系(把分數看成比)

(1)甲是乙的幾分之幾?

甲=乙×幾分之幾乙=甲÷幾分之幾幾分之幾=甲÷乙

(2)甲比乙多(少)幾分之幾?

4、按比例分配:把一個量按一定的比分配的方法叫做按比例分配。

5、畫線段圖:

(1)找出單位"1"的量,先畫出單位"1",標出已知和未知。

(2)分析數量關系。(3)找等量關系。(4)列方程。

兩個量的關系畫兩條線段圖,部分和整體的關系畫一條線段圖。

第五單元圓

一、圓的特徵

1、圓是平面內封閉曲線圍成的平面圖形。

2、圓的特徵:外形美觀,易滾動。

3、圓心O:圓中心的點叫做圓心.圓心一般用字母O表示。

圓多次對折之後,摺痕的相交於圓的中心即圓心。圓心確定圓的位置。

半徑r:連接圓心到圓上任意一點的線段叫做半徑。在同一個圓里,有無數條半徑,且所有的半徑都相等。半徑確定圓的大小。

直徑d:通過圓心且兩端都在圓上的線段叫做直徑。在同一個圓里,有無數條直徑,且所有的直徑都相等。直徑是圓內最長的線段。

同圓或等圓內直徑是半徑的2倍:d=2r或r=d÷2

4、等圓:半徑相等的圓叫做同心圓,等圓通過平移可以完全重合。

同心圓:圓心重合、半徑不等的兩個圓叫做同心圓。

5、圓是軸對稱圖形:如果一個圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形是軸對稱圖形。摺痕所在的直線叫做對稱軸。

有一條對稱軸的圖形:半圓、扇形、等腰梯形、等腰三角形、角。

有二條對稱軸的圖形:長方形

有三條對稱軸的圖形:等邊三角形

有四條對稱軸的圖形:正方形

有無條對稱軸的圖形:圓,圓環

6、畫圓

(1)圓規兩腳間的距離是圓的半徑。(2)畫圓步驟:定半徑、定圓心、旋轉一周。

二、圓的周長:圍成圓的曲線的長度叫做圓的周長,周長用字母C表示。

1、圓的周長總是直徑的三倍多一些。

2、圓周率:圓的周長與直徑的比值是一個固定值,叫做圓周率,用字母π表示。

即:圓周率π=周長÷直徑≈3.14

所以,圓的周長(c)=直徑(d)×圓周率(π)-周長公式:c=πd,c=2πr

圓周率π是一個無限不循環小數,3.14是近似值。

3、周長的變化的規律:半徑擴大多少倍直徑也擴大多少倍,周長擴大的倍數與半徑、直徑擴大的倍數相同。

4、半圓周長=圓周長一半+直徑=πr+d

三、圓的面積s

1、圓面積公式的推導

如圖把一個圓沿直徑等分成若干份,剪開拼成長方形,份數越多拼成的圖像越接近長方形。

圓的半徑=長方形的寬

圓的周長的一半=長方形的長

長方形面積=長×寬

所以:圓的面積=圓的周長的一半(πr)×圓的半徑(r)

S圓=πr×r=πr2

2、幾種圖形,在面積相等的情況下,圓的周長最短,而長方形的周長最長;反之,在周長相等的情況下,圓的面積則最大,而長方形的面積則最小。

周長相同時,圓面積最大,利用這一特點,籃子、盤子做成圓形。

3、圓面積的變化的規律:半徑擴大多少倍,直徑、周長也同時擴大多少倍,圓面積擴大的倍數是半徑、直徑擴大的倍數的平方倍。

4、環形面積=大圓-小圓=πR2-πr2

扇形面積=πr2×n÷360(n表示扇形圓心角的度數)

5、跑道:每條跑道的周長等於兩半圓跑道合成的圓的周長加上兩條直跑道的和。因為兩條直跑道長度相等,所以,起跑線不同,相鄰兩條跑道起跑線也不同,間隔的距離是:2×π×跑道寬度。

一個圓的半徑增加a厘米,周長就增加2πa厘米。

一個圓的直徑增加b厘米,周長就增加πb厘米。

6、任意一個正方形的內切圓即最大圓的直徑是正方形的邊長,它們的面積比是4∶π。

7、常用數據

π=3.142π=6.283π=9.424π=12.565π=15.7

第六單元百分數(一)

一、百分數的意義:表示一個數是另一個數的百分之幾的數叫做百分數。百分數又叫百分比或百分率,百分數不能帶單位。

注意:百分數是專門用來表示一種特殊的倍比關系的,表示兩個數的比。

1、百分數和分數的區別和聯系:

(1)聯系:都可以用來表示兩個量的倍比關系。

(2)區別:意義不同:百分數只表示倍比關系,不表示具體數量,所以不能帶單位。分數不僅表示倍比關系,還能帶單位表示具體數量。百分數的分子可以是小數,分數的分子只可以是整數。

注意:百分數在生活中應用廣泛,所涉及問題基本和分數問題相同,分母是100的分數並不是百分數,必須把分母寫成"%"才是百分數,所以"分母是100的分數就是百分數"這句話是錯誤的。"%"的兩個0要小寫,不要與百分數前面的數混淆。一般來講,出勤率、成活率、合格率、正確率能達到100%,出米率、出油率達不到100%,完成率、增長了百分之幾等可以超過100%。一般出粉率在70%、80%,出油率在30%、40%。

2、小數、分數、百分數之間的互化

(1)百分數化小數:小數點向左移動兩位,去掉"%"。

(2)小數化百分數:小數點向右移動兩位,添上"%"。

(3)百分數化分數:先把百分數寫成分母是100的分數,然後再化簡成最簡分數。

(4)分數化百分數:分子除以分母得到小數,(除不盡的保留三位小數)然後化成百分數。

(5)小數化分數:把小數成分母是10、100、1000等的分數再化簡。

(6)分數化小數:分子除以分母。

二、百分數應用題

1、求常見的百分率,如:達標率、及格率、成活率、發芽率、出勤率等求百分率就是求一個數是另一個數的百分之幾。

2、求一個數比另一個數多(或少)百分之幾,實際生活中,人們常用增加了百分之幾、減少了百分之幾、節約了百分之幾等來表示增加、或減少的幅度。

求甲比乙多百分之幾:(甲-乙)÷乙

求乙比甲少百分之幾:(甲-乙)÷甲

3、求一個數的百分之幾是多少。一個數(單位"1")×百分率

3、已知一個數的百分之幾是多少,求這個數。

部分量÷百分率=一個數(單位"1")

5、百分數應用題型分類

(1)求甲是乙的百分之幾--(甲÷乙)×100%=百分之幾

(2)求甲比乙多百分之幾--(甲-乙)÷乙×100%

(3)求甲比乙少百分之幾--(乙-甲)÷乙×100%

第七單元扇形統計圖的意義

1、扇形統計圖的意義:用整個圓的面積表示總數,用圓內各個扇形面積表示各部分數量同總數之間關系,也就是各部分數量占總數的百分比,因此也叫百分比圖。

2、常用統計圖的優點:

(1)條形統計圖直觀顯示每個數量的多少。

(2)折線統計圖不僅直觀顯示數量的增減變化,還可清晰看出各個數量的多少。

(3)扇形統計圖直觀顯示部分和總量的關系。

⑵ 六年級上冊數學重點知識點有哪些

六年級上冊數學重點知識點:

1、分數乘法的意義。

(1)分數乘整數與整數乘法的意義相同。都是求幾個相同加數的和的簡便運算。

(2)分數乘分數是求一個數的幾分之幾是多少。

2、分數乘法的計演算法則。

(1)分數與整數相乘:分子與整數相乘的積做分子,分母不變。

(2)分數與分數相乘:用分子相乘的積做分子,分母相乘的積做分母。

3、整數乘法的交換律、結合律和分配律,對於分數乘法也同樣適用。

乘法交換律: a×b=b×d

乘法結合律: a×b×c=a×(b×c)

乘法分配律:a×(b+c)=ab+ac 或a×(b-c)=ab-ac

4、分數除法的意義

分數除法與整數除法的意義相同,表示已知兩個因數的積和其中一個因數,求另一個因數的運算。

分數除法的計演算法則:除以一個不為0的數,等於乘這個數的倒數。

規律(分數除法比較大小時):

(1)當除數大於1,商小於被除數;

(2)當除數小於1(不等於0),商大於被除數;

(3)當除數等於1,商等於被除數。

⑶ 小學都有哪些數學知識點。(北師大版 六年級上冊)要詳細的!

北師大版六年級上冊數學的知識點教學目標(供參考)





內容
知識技能
數學素養

數與代數
數的運算
能計算實際問題中「增加百分之幾」或「減少百分之幾」。
體會百分數與現實生活的密切聯系,提高運用數學解決實際問題的能力;通過觀察、分析、歸納、類比與猜測、驗證,發展初步的合情推理,體驗數學問題的探索性和挑戰性。

能解決「比一個數增加百分之幾的數」或「比一個數減少百分之幾的數」。

能用方程解決有關百分數的逆解題。

解決與儲蓄有關的實際問題。

比的認識
理解比的意義及其與除法、分數的關系,會求比值。

運用商不變的性質或分數的基本性質化簡比。

能運用比的意義解決按照一定的比進行分配的實際問題。

空間與圖形
圖形的認識
認識圓、體會圓的特徵及圓心和半徑的作用,會用圓規畫圓。
通過觀察、操作、想像等活動,發展空間觀念。通過動手拼擺等活動,體會「化曲為直」的數學思想;結合欣賞和設計,發展想像力和創造力;提高學生靈活運用各種策略解決問題的能力。

用圓的知識解釋生活中的簡單現象。

掌握圓的周長和面積的計算方法。

利用圓規設計簡單的圖案。

運用圓的周長和面積的知識解決實際問題(包括復雜的組合圖形周長和面積的計算)。

圖形與變換
能有條理的表達一個簡單圖形經過平移、旋轉或軸對稱製作復雜圖形的過程。
通過欣賞和設計圖案,使學生感受圖形世界的神奇,發展學生的空間觀念。

能靈活運用平移、旋轉和軸對稱在方格紙上設計圖案

圖形與位置
能正確辨認從不同方向(正面、側面、上面)觀察到的立體圖形(5個小正方體)的形狀,並畫出草圖。
通過觀察物體,發現規律,不斷發展學生的空間觀念。

能根據觀察到的正面、側面、上面的平面圖形還原立體圖形。

能根據給定的兩個方向觀察到的平面圖形的形狀確定搭成的立體圖形所需小立方體的數量范圍。

利用觀察范圍隨觀察點、觀察角度的變化而改變的規律解釋生活中的一些現象。

統計與概率
數據統計
認識復式條形統計圖和復式折線統計圖,了解他們的特點。
經歷收集、整理和分析數據的過程,逐步形成統計觀念。

能根據需要選擇復式條形統計圖和復式折線統計圖有效地表示數據。

能讀懂簡單的復式統計圖,根據統計結果做出簡單的判斷和預測。

綜合實踐
數學與體育
用列表、畫圖的方式尋找解決問題的規律。
體會數學知識在體育、生活中的應用,發展數學應用意識,體會圖表的關系,學會分析量與量之間的關系,提高觀察分析能力,增強應用意識。

運用圓的有關知識計算所走彎道距離。

利用數學知識解決營養配餐問題。

生活中的數
了解收集數據的常用方法。
通過對現實生活中的數據的處理,發展數感與處理數據的能力;體會數在表達、交流和傳遞信息中的作用。

體會大數估計的策略和方法,進行簡單的估算。

了解數字的用途,知道一個「編號」中某些數字所代表的意義。

進一步體會負數的意義。

會畫折線統計圖描述事物的變化情況。

看圖找關系
從圖中分析出某些量之間的關系,並用語言表達。
發展有條理思考和表達的能力。

體會圖刻畫事物或數之間的關系,能分析一些簡單的關系。

第一單元:圓

圓的認識(一)

1.圓中心的一點叫圓心,用O表示.一端在圓心,另一端在圓上的線段叫半徑,用r表示.兩端都在圓上,並過圓心的線段叫直徑,用d表示.

2.圓有無數條半徑,有無數條直徑.

3.圓心決定圓的位置,半徑決定圓的大小.

圓的認識(二)

4.把圓對折,再對折就能找到圓心.

5.圓是軸對稱圖形,直徑所在的直線是圓的對稱軸.圓有無數條對稱軸.

6.在同一個圓里,直徑的長度是半徑的2倍,可以表示為d=2r或r=d/2.

圓的周長

7.圓一周的長度就是圓的周長.

8.圓的周長除以直徑的商是一個固定的數,我們把它叫做圓周率,用字母π表示,計算時通常取3.14.

9.C=πd或C=πr.

10.1π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7 6π=18.84 7π=21.98 8π=25.12 9π=28.26 10π=31.4

圓的面積

11.用S表示圓的面積, r表示圓的半徑,那麼S=πr^2 S環=π(R^2-r^2)

12.11^2=121 12^2=144 13^2=169 14^2=196 15^2=225 16^2=256 17^2=289 18^2=324 19^2=361 20^2=400

13.周長相等時,圓的面積最大.面積相等時,圓的周長最小.

第二單元:百分數的應用

百分數的應用(四)

14.利息=本金乘利率乘時間

第四單元:比的認識

15.兩個數相除,又叫做這兩個數的比.比的後項不能為0.16.比的前項和後項同時乘上或除以一個相同的數(0除外).比值不變,這叫做比的基本性質.

⑷ 小學數學六年級上冊知識點總結

我有教案,上面有,你自己找吧,選我吧。
1.用數對表示物體的位置。
2.在方格紙上用數對確定位置。

分數乘整數的意義及計算方法 例1 分數乘整數的意義及計算方法
例2 分數乘整數的簡便演算法
分數乘分數的意義及計算方法 例3 分數乘分數的意義及計算方法
例4 分數乘分數的簡便演算法
運算定律、簡便計算 例5 分數乘法的運算定律
例6 分數混合運算的簡便計算

分數乘整數的意義及計算方法 例1 分數乘整數的意義及計算方法
例2 分數乘整數的簡便演算法
分數乘分數的意義及計算方法 例3 分數乘分數的意義及計算方法
例4 分數乘分數的簡便演算法
運算定律、簡便計算 例5 分數乘法的運算定律
例6 分數混合運算的簡便計算
例1 倒數的意義
例2 倒數的求法

例1 分數除法的意義
例2 分數除法的計算方法
例3
例4 分數四則混合運算例1 己知一個數的幾分之幾是多少,求這個數的問題
例2 稍復雜的己知一個數的幾分之幾是多少,求這個數的問題
第一小節 比的意義
第二小節 例1 比的基本性質
第三小節 例2 比的應用

認識圓 例1 用一般的物體畫圓
例2 通過折圓的操作活動認識圓
用圓規畫圓
例3 認識圓是軸對稱圖形
圓的周長 探索圓的周長公式、圓周率
例1 圓的周長的計算
圓的面積 探索圓的面積公式
例1 圓的面積計算
例2 圓形的面積計算

⑸ 北師大版六年級上冊數學知識要點、總結。不要試題,不要吐槽。

化學世界初中高中化學知識點總結了
初中高中化學知識點總結1

化學的研究材料組成,結構,和變化在基礎科學的性質。 ,
商代青銅器的我國勞動人民,戰國煉鐵,煉鋼。
3,綠色化學-----環境友好化學(化合反應符合綠色化學反應)
①四個特點P6(原料,條件,零排放的產品)②核心:利用化學原理消除污染
蠟燭燃燒實驗(描述現象,從源頭上,而不是商品名)
(1)火焰:焰心,內焰(明亮),外焰溫度最高BR />(2):平成火柴火焰的火焰層溫度。現象:兩端的第一個碳化的結論:外焰溫度最高
(3)檢查產品H2O:寒冷,乾燥的燒杯蓋上面的火焰,水霧
CO2:取下燒杯,燒杯中,倒入澄清石灰,振盪,變渾濁
(4)關閉白煙(蒸汽石蠟),亮白色的煙霧,的蠟燭恢復。燃燒石蠟水汽。比較

5,吸入的空氣和呼出的空氣,吸入的空氣中的氧氣呼出的氣體,CO2和H2O
增加的空氣量(吸入和呼出的氣體成分,減少是相同的)
6,學習化學的重要途徑 - 科學探究
一般步驟:→實驗的問題→猜想與假設→設計實驗→記錄與結論→反思和評估
化學學習的特點,關注的物質的性質,變化,變化過程及其現象;
7,化學實驗(化學實驗?基礎科學)

一種常用的儀器/>;
儀器
(a)為加熱裝置 - 試管,燒杯,燒瓶,錐形燒瓶中的蒸發皿中,並可以直接加熱, - 管,蒸發皿中,燃燒的儀器勺子只有間接加熱 - 燒杯,燒瓶中,錐形燒瓶中(石棉墊網路 - 均勻加熱)
加熱儀器可以用於固體 - 管,蒸發皿
可用於液體加熱裝置 - 試管,燒杯,蒸發皿中,燒瓶
錐形瓶中儀器不能被加熱 - 帶刻度的量筒,漏斗,集氣瓶
(b)測量容器 - 畢業從氣缸的
測量液體體積氣瓶必須投資穩定。景象和行的大小,並保持水平的最低點與液體彎月面的量筒。
料筒加熱不能被使用,並且不能被用作反應容器中。的范圍內有10毫升量筒中,並且通常只能被讀取到0.1毫升。的
(C)稱量 - 托盤天平(大致稱量准確至0.1 g)。
注意:(1)調整零點
(2)重量的稱重的位置,離開了正確的代碼。
(3)稱量物體不能直接放在托盤上。
仿製葯來衡量這兩個托盤,裝上規模,同等質量的紙,在紙張上的重量。濕的或有腐蝕性的葯物(如鈉),以重量計在沖壓玻璃器皿(如小燒杯中,表面的菜)。
(4)把持重量的鉗子。第一個加入質量權重,重量的增加,增加的質量小的權重(第一尺寸)
(5)稱量,騎車人應該是零。重量返回到盒子的重量。用酒精燈加熱設備 -

(D)(1)酒精燈的使用應注意的「三不」:①不添加酒精,酒精燈點亮;②用火柴點燃可直接從側燈顯著的酒精燈酒精燃燒的酒精燈點燃另一盞燈;③熄滅煤油燈,燈熄,而不是吹出來的。
酒精燈(2)酒精量不超過2/3的體積酒精燈,而不應小於一季度。
(3)被分成3層,外層中的火焰,火焰的酒精燈,在火焰中的火焰核心。使用酒精燈外焰加熱物體。
(4)酒精燈不慎翻倒燃燒,燃燒的酒精在實驗台上,用沙土覆蓋或用濕抹布火熄滅,並且不能用清水洗干凈。
(五)持有人 - 的鐵夾測試管架
鐵夾夾緊試驗管的位置應該是在試管口近1/3。管夾油炸鍋,然後按拇指短柄。
管夾試管中,試管中機架應的套筒,從底部的夾緊構件從近1/3的試管口,舉行
(F)的分離的物質和移動工具密切 - 漏斗長頸漏斗
過濾器在漏斗底部的噴嘴和燒杯飛濺進行的內部,以避免將濾液。的
下端的長頸漏斗噴嘴的插入在該液位以下,以防止逸出的氣體所產生的長頸漏斗。

化學實驗基本操作

(一)獲得葯物
葯品儲存:
一般固體葯物罐,液體葯品窄口瓶(小量的葯液瓶),金屬鈉保存在煤油中,白磷存放在葯物水

(1)葯物的一般原則:實驗需要支付。如果沒有劑量應採取管的底部被覆蓋的最小量的固體是合適的,

(2)空氣污染預防和控制空氣污染有害氣體(CO,SO2,氮氧化物)和煙塵。目前,該項目包括空氣中CO,SO2,NO2,O3,和可吸入顆粒物污染指數。
(3)危險的空氣污染,保護
危害:嚴重損害人體健康,影響作物生長,破壞生態平衡的全球變暖,臭氧層耗竭,酸雨
保護:加強空氣質量監控和完善國家的環境,使用清潔能源,工廠廢氣處理,排放,積極植樹,造林,草
(4)對環境的污染問題:
臭氧層的破壞(氟里昂,氮氧化物白色污染(塑料垃圾)

氧)
酸雨,溫室效應(CO2,CH4等)(NO2, SO2等)
(1)氧氣的化學性質:獨特的性質:呼吸
(2)氧氣支持燃燒,提供與下列物質中的現象BR /
碳紅色狂熱的空氣中的氧氣,並發出白色的光來產生料現象,使石灰水變渾濁的氣體
磷澄清了大量的白煙</硫在空氣中發出明亮的藍色,幽幽的淡藍色火焰紫色火焰的氧刺激氣體的氣味
鎂一道刺眼的白光,放出白色固體鋁

鐵劇烈燃燒產生的熱量,火花,
的的石蠟問題上了白色側壁縮合氧燃燒溫度高,因此澄清石灰水混濁氣體
鐵,鋁燃燒生成的黑色固體(四氧化三鐵),少量的水或沙子,在底部的氣缸組目的為了防止飛濺的熔爆底部
鐵,鋁在空氣中燃燒,不提供。
(3)製取氧氣:
原則的氧 - 氧分離液態空氣法(原理:沸點的氮和氧不同的物理變化)
實驗室生產的工業生產2H2O2二氧化錳2H2O + O2↑
2KMnO4△K2MnO4 +二氧化錳+ O2↑
2KClO3MnO22KCl +3 O2↑
(4)編寫的氣體收集裝置的選擇△
電源發電設備:加熱的固體 - 固體,固 - 液不加熱收集裝置:根據該材料的密度,一個例子的步驟和關注點的溶解性
(5)下游的氧(氧氣和高錳酸鉀系統收集的排水方法)
1步:檢查 - 安裝 - 固定 - 點 - 關閉 - 轉移 - 淬火
B注

①試管口略向下傾斜: BR />②葯物,以防止冷凝迴流管破裂,導致在試管底部均勻加熱的瓷磚
③鐵夾文件夾④導管放置在遠離噴嘴約1/3
應稍微露出橡膠塞:
⑤質量的棉花:防止高錳酸鉀粉末進入導管
⑥排水收集氣泡,即使連續採集(開始放電在空氣中的氣體放電管的方便埠在試管中)
⑦結束試驗,帶,第一移位導管熄滅酒精燈:防止水向下吸入管破裂的
⑧以收集氣體氧通風空氣從導管完全體驗一個集氣瓶的底部
(6):發光集氣瓶口
檢查:火星膠合板延伸到一組氣缸催化劑(催化劑):您可以改變化學反應的速度的其它物質的化學反應,而無需改變的性質和化學
反應之前和之後的物質的質量。 (更改常數)所扮演的角色
稱為催化的化學反應的催化劑。
8,常見氣體的用途:
(1)氧氣支持燃燒(如燃料燃燒,煉鋼,氣焊)
②氮:呼吸(如潛水,醫療急救) />
:保護的惰性氣體(化學惰性),硝酸根(肥料),在液氮中冷凍機的重要原料
一般(3)惰性氣體(氦,氖,氬,氪,氙等):
保護氣,電光源(電源指示燈頭發顏色不同),常見的氣體檢測激光技術

(1)氧:
②木二氧化碳:火星澄清石灰水>③氫氣點燃,用冷的,乾燥的燒杯中蓋上面的火焰;
或第一銅通過熱氧化,然後用無水硫酸銅/> 9,氧化反應發生與氧(氧元素)的化學反應的物質。
嚴重的氧化燃燒
緩慢氧化生銹,呼吸的東西
常見的腐葡萄酒的釀造:(1)氧化反應②放熱
知識三個單位的天然水「 />水
1,水的組成:水的電解實驗
(1)
A. ---
B.電源電解水的類型--- DC > C.加入硫酸或氫氧化鈉----增強導電性的水
D.化學反應:2H2O === 2H2↑+ O2↑
生成一個位置的陰極負
的體積比為2:1
質量比為1:8
F.檢查:O2 ---出口設置余燼的木條----木復甦
/> H2 ---------天然氣出口燃著的木柴燃燒,淡藍色的火焰
(2)結論:(1)水,氫,氧元素。
②的水分子由兩個氫原子和氧原子構成的。
③化學變化,分子可分為原子不可分割的。
例如:水的化學式H2O,你可以閱讀的信息 /> H2O
①物質的水的組合物,這種物質在該物質的水

③通過氫元素和氧元素代表一個分子的物質,所述通式意義水分子
④表明這種物質是一種分子組成的一個分子的水組成的兩個氫原子和一個氧原子
2H2O === 2H2↑+ O 2↑
(2 )的水的反應,可以用在某些氧化物的情況下,由分解產生的水
(1)鹼的化學性質,被通電(可溶性鹼),例如:H 2 O + ==的CaO,的Ca(OH)2
(3)的酸性水的能滿足一定的反應所產生的氧化物,例如:H 2 O + CO 2 == H2CO3
3,水的污染:
(1)水
海A.地球表面的71%被水覆蓋,但淡水供人類使用,和小於1%
B.海洋是最大的水庫。海水中含有80元素。水是最豐富的物質是H2O,大部分的金屬元素鈉,大多數元素O.
C.狀態,水資源分布不均的國家,人均少。
(2 )水污染
水污染物的工業「三廢」(廢渣,廢水,廢氣),農葯,化肥,排放污水的不合理應用
/> B防止水的污染排放標準的工業廢水處理,以促進零排放,廢水排放標准側重於倡導的零排放,合理施用農葯,化肥,推廣使用有機肥,加強水質監測。
(3)護理水資源,涵養水源,防止水質污染
水凈化
(1)水的凈化效果由低到高的狀態,吸附,過濾,蒸餾法(物理法),其特徵在於凈化效果最好的操作蒸餾;既起過濾作用的吸附凈化劑是活性炭。
(2)硬水和軟水
A.定義的硬水中含有水的水溶性鈣,鎂化合物;
柔軟劑的含有或含有較少的可溶性鈣,鎂化合物。
B.識別方法:泡沫與肥皂水敗類硬水中,泡軟
C.水軟化:長期使用硬水蒸餾的水,沸騰
D.缺點:浪費肥皂,洗干凈的衣服,鍋爐很容易形成規模效應,不僅浪費燃料,而且也容易變形,甚至會導致管鍋爐爆炸。
>
(1)的溶劑,水是最常用的,該氧化物是最低的相對分子??質量。
水:檢查與無水硫酸銅(2),從白色到藍色的變化,表示水的存在下;硫酸銅5 H2O =硫酸銅?5H2O下
吸水率:常用在濃硫酸中,石灰,固體氫氧化鈉,鐵粉。
氫氣H2
物理性能:密度最小的氣體(向下排空氣法「),不溶於水(排水法)
化學性質:
(1)易燃性(用途:高能燃料,氫氧焰焊接,切割金屬)的
2H2 + O2 ==== 2H2O點燃之前的經驗純(方法?)
現象:發出淡藍色火焰,放熱反應,生成滴
(2)減少(用途:冶煉金屬)
H2 +銅氧化銅=== + H2O氫「待機」
現象:<BR /「變成紅色的嘴下降產生的黑色粉末
(摘要:易燃性,還原性物質H2,CO,C),氫實驗室方法
原則:鋅+ H2SO4 = ZnSO4的+ H2現在↑鋅2HCL =氯化鋅+ H2↑
強揮發性非濃縮鹽酸和濃鹽酸的原因;
不可用濃硫酸,濃硫酸或硝酸,強氧化性和硝酸鹽。
4,無污染的氫三大優勢,高熱量的排放源

分子的分子和原子的原子
定義分子材料和化學性能,最小的粒子原子是化學變化的最小粒子。
性質是小的,
聯系分子不斷運動質量上的差距是由原子,分子,原子,物質粒子。
化學改變分子之間的差異,可分為原子不能分開。的
化學反應:分子內的原子分為物質原子重新組合成一個新的分子的化學反應。
,材料組成,原子的
物質的組成元素的純物質的組成和分類
:金屬,稀有氣體,碳,硅。的
物質分子:氯化氫,通過組合物中的分子如氯化氫。
的氫,氧,氮,氯離子:NaCl的離子化合物,如氯化鈉,鈉離子(Na +),氯離子(Cl-)的構成
混合物(各種物質)/>關鍵字質量金屬,非??金屬,稀有氣體元素的純物質

(物質)的化合物:有機化合物CH4,C2H5OH,C6H12O6,澱粉,蛋白質(元素)
無機化合物的氧化銅氧化H2O,CO2
鹽酸鹽H2SO4,HNO3
鹼NaOH溶液中的Ca(OH)2 KOH
鹽鹽硫酸銅碳酸鈉

⑹ 六年級上冊數學知識點

六年級數學上冊期末復習要點(人教版)

第1單元 分數乘法

(二)分數乘法的意義

1、分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。「分數乘整數」指的是第二個因數必須是整數,不能是分數。

2、一個數乘分數的意義就是求一個數的幾分之幾是多少。「一個數乘分數」指的是第二個因數必須是分數,不能是整數。(第一個因數是什麼都可以)

(二)分數乘法計演算法則

1、分數乘整數的運演算法則是:分子與整數相乘,分母不變.

(1)為了計算簡便能約分的可先約分再計算。(整數和分母約分)(2)約分是用整數和下面的分母約掉最大公因數。(整數千萬不能與分母相乘,計算結果必須是最簡分數)。

2、分數乘分數的運演算法則是:用分子相乘的積做分子,分母相乘的積做分母(分子乘分子,分母乘分母)。

(1)如果分數乘法算式中含有帶分數,要先把帶分數化成假分數再計算。

(2)分數化簡的方法是:分子、分母同時除以它們的最大公因數。

(3)在乘的過程中約分,是把分子、分母中,兩個可以約分的數先劃去,再分別在它們的上、下方寫出約分後的數。(約分後分子和分母必須不再含有公因數,這樣計算後的結果才是最簡單分數)。

(4)分數的基本性質:分子、分母同時乘或者除以一個相同的數(0除外),分數的大小不變。

(三)積與因數的關系:

一個數(0除外)乘大於1的數,積大於這個數。a×b=c,當b>1時,c>a。

一個數(0除外)乘小於1的數,積小於這個數。a×b=c,當b<1時,c<a(b<0)。

一個數(0除外)乘等於1的數,積等於這個數。a×b=c,當b=1時,c=a。

在進行因數與積的大小比較時,要注意因數為0時的特殊情況。

(四)分數乘法混合運算

1、分數乘法混合運算順序與整數相同,先乘、除後加、減,有括弧的先算括弧裡面的,再算括弧外面的。

2、整數乘法運算定律對分數乘法同樣適用;運算定律可以使一些計算簡便。

乘法交換律:a×b=bXa乘法結合律:(a×b)Xc=a×(b×c)

乘法分配律:a×(b±c)=a×b土a×c

(五)倒數的意義:乘積為1的兩個數互為倒數。

1、倒數是兩個數的關系,它們互相依存,不能單獨存在。單獨一個數不能稱為倒數。(必須說清誰是誰的倒數)

2、判斷兩個數是否互為倒數的唯一標準是:兩數相乘的積是否為「1」。例如:a×b=1則a、b互為倒數。

3、求倒數的方法:

①求分數的倒數:交換分子、分母的位置。

②求整數的倒數:整數分之1。

③求帶分數的倒數:先化成假分數,再求倒數。

④求小數的倒數:先化成分數再求倒數。

內容比較多,完整列印版請見網路文庫:人教版六年級上冊數學期末知識要點

⑺ 北師大版六年級數學上冊所有概念、公理、公式

第一章一元一次不等式和一元一次不等式組 不等式:用不等號連接的式子叫做不等式 不等式的解:能使不等式成立的未知數的值,叫做不等式的解 解不等式:求不等式解集的過程 一元一次不等式;只含有一個未知數,並且未知數的最高次數是一定不等式 一元一次不等式組:關於同一未知數的幾個一元一次不等式合在一起,就組成一個一元一次不等式組 一元一次不等式組的解集:一元一次不等式組中各個不等式的解集的公共部分 解不等式組:球不等式組解集的過程 第二章 分解因式 分解因式;把一個多項式化成幾個整式的積的形式 提公因式法:把一個多項式的公因式提出來,從而將多項式化成兩個因式乘積的形式,這種分解因式的方法叫做提公因式法 運用公式法:把乘法公示反過來把某些多項式分解因式的方法第三章 分式 分式:整式A除以整式B,如果除式B中含有字母,那麼稱A/B為整式 分式的約分:把一個分式的分子和分母的公因式約去 分式的通分:根據分式的基本性質,異分母分式可以化為同分母分式,這一過程稱為分式的通分 分式方程:分母中含有未知數的方程第四章 相似圖形 線段的比:如果選用同一個長度單位量得兩條線段AB,CD的長度分別是m,n,那麼就說這兩條線段的比 AB:CD=m:n 比例線段:四條線段a,b,c,d中,如果a與b的比等於c與d的比,即a/b=c/d,那麼這四條線段a,b, c,d叫做成比例線段,簡稱比例線段 黃金分割:點C把線段AB分成兩條線段AC和BC,如果AC/AB=BC/AC,那麼稱線段AB被點C黃金分割 相似多邊形:各角對應相等,各邊對應成比例的兩個多邊形 相似三角形:三角對應相等,三邊對應成比例的兩個三角形第五章 數據的收集與處理 普查:對考察對象進行的全面調查 總體:所要考察對象的全體 個體:組成總體的每一個考察對象 抽樣調查:從總體中抽取部分個體進行調查 頻數:每個對象出現的次數 頻率:每個對象出現的次數與總次數的比值第六章 證明(一) 命題:判斷一件事情的句子 公理:公認的真命題 定理:經過證明的真命題 推論:由一個公理或定理直接推出的定理 12。