當前位置:首頁 » 基礎知識 » 初三數學上冊期中必考知識點
擴展閱讀
兒童術後吃什麼排便 2024-11-05 20:58:37

初三數學上冊期中必考知識點

發布時間: 2022-07-25 14:26:55

『壹』 人教版初三上冊數學各章節重要知識點歸納(推薦下載)

主要知識點二次根式。

一般地,形如√a的代數式叫做二次根式,其中,a叫做被開方數。當a≥0時,√a表示a的算術平方根;當a小於0時,√a的值為純虛數(在一元二次方程求根公式中,若根號下為負數,則方程有兩個共軛虛根)。

判斷一個二次根式是否為最簡二次根式主要方法是根據最簡二次根式的定義進行,或直觀地觀察被開方數的每一個因數(或因式)的指數都小於根指數2,且被開方數中不含有分母,被開方數是多項式時要先因式分解後再觀察。

最簡二次根式

最簡二次根式條件:

1、被開方數的因數是整數或字母,因式是整式;

2、被開方數中不含有可化為平方數或平方式的因數或因式。

以上資料參考:網路-二次根式

『貳』 初三上冊數學知識點歸納

初三數學知識點 第一章 二次根式 1 二次根式:形如a
(0a)的式子為二次根式;
性質:a
(0a)是一個非負數;

02
aaa


02
aaa

2 二次根式的乘除: 0,0

baabba;

0,0
bab
ab
a。
3 二次根式的加減:二次根式加減時,先將二次根式華為最簡二次根式,再將被開方數相同的二次根式進行合並。
4 海倫-秦九韶公式:)
)()((cpbpppS
,S是三角形的面積,
p為2
c
bap

第二章 一元二次方程
1 一元二次方程:等號兩邊都是整式,且只有一個未知數,未知數的最高次是2的方程。
2 一元二次方程的解法
配方法:將方程的一邊配成完全平方式,然後兩邊開方; 公式法:a
acbbx242



因式分解法:左邊是兩個因式的乘積,右邊為零。 3 一元二次方程在實際問題中的應用
4 韋達定理:設21,xx是方程02cbxax的兩個根,那麼有

初三全科目課件教案習題匯總語文數學英語物理化學

a
cxxa
bxx


2121
,
第三章 旋轉 1 圖形的旋轉
旋轉:一個圖形繞某一點轉動一個角度的圖形變換 性質:對應點到旋轉中心的距離相等;
對應點與旋轉中心所連的線段的夾角等於旋轉角 旋轉前後的圖形全等。
2 中心對稱:一個圖形繞一個點旋轉180度,和另一個圖
形重合,則兩個圖形關於這個點中心對稱;
中心對稱圖形:一個圖形繞某一點旋轉180度後得到的
圖形能夠和原來的圖形重合,則說這個圖形是中心對稱圖形;
3 關於原點對稱的點的坐標 第四章 圓
1 圓、圓心、半徑、直徑、圓弧、弦、半圓的定義 2 垂直於弦的直徑
圓是軸對稱圖形,任何一條直徑所在的直線都是它
的對稱軸;
垂直於弦的直徑平分弦,並且平方弦所對的兩條弧; 平分弦的直徑垂直弦,並且平分弦所對的兩條弧。 3 弧、弦、圓心角
在同圓或等圓中,相等的圓心角所對的弧相等,所

對的弦也相等。
4 圓周角
在同圓或等圓中,同弧或等弧所對的圓周角相等,都等
於這條弧所對的圓心角的一半;
半圓(或直徑)所對的圓周角是直角,90度的圓周角
所對的弦是直徑。
5 點和圓的位置關系 點在
rd
點在圓上 d=r 點在圓內 d<r
定理:不在同一條直線上的三個點確定一個圓。 三角形的外接圓:經過三角形的三個頂點的圓,外接圓的
圓心是三角形的三條邊的垂直平分線的交點,叫做三角形的外心。
6直線和圓的位置關系 相交 d<r 相切 d=r 相離 d>r
切線的性質定理:圓的切線垂直於過切點的半徑; 切線的判定定理:經過圓的外端並且垂直於這條半徑的直
線是圓的切線;
切線長定理:從圓外一點引圓的兩條切線,它們的切線長

相等,這一點和圓心的連線平分兩條切線的夾角。
三角形的內切圓:和三角形各邊都相切的圓為它的內切圓,
圓心是三角形的三條角平分線的交點,為三角形的內心。
7 圓和圓的位置關系
外離 d>R+r 外切 d=R+r 相交 R-r<d<R+r 內切 d=R-r 內含 d<R-r 8 正多邊形和圓
正多邊形的中心:外接圓的圓心 正多邊形的半徑:外接圓的半徑 正多邊形的中心角:沒邊所對的圓心角 正多邊形的邊心距:中心到一邊的距離 9 弧長和扇形面積 弧長 180
rnl

扇形面積:360
2
rnS
10 圓錐的側面積和全面積 側面積: 全面積
11 (附加)相交弦定理、切割線定理

第五章 概率初步
1 概率意義:在大量重復試驗中,事件A發生的頻率nm
穩定在
某個常數p附近,則常數p叫做事件A的概率。
2 用列舉法求概率
一般的,在一次試驗中,有n中可能的結果,並且它們發生的概率相等,事件A包含其中的m中結果,那麼事件A發生的概率就是p(A)=
n
m

『叄』 中考數學必考知識點有哪些

中考數學必考知識點如下:

1、三角形中位線定理:三角形的中位線平行於第三邊,並且等於它的一半。

2、圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角。

3、平行四邊形的定義和相關概念,平行四邊形的性質,平行四邊形的對角線的性質,兩條平行線距離。

4、平行四邊形的判定定理,平行四邊形的性質與判定的綜合運用,三角形的中位線定理。

5、矩形的性質和判定,直角三角形斜邊上中線,菱形的性質和判定定理,正方形的性質和判定。

『肆』 數學中考知識點歸納有哪些

數學中考知識點如下:

1、絕對值:絕對值是指一個數在數軸上所對應點到原點的距離。正數的絕對值是它本身,負數的絕對值是它的相反數;0的絕對值是0,兩個負數,絕對值大的反而小。

2、求n個相同因數乘積的運算,叫做乘方,乘方的結果叫做冪。其中,a叫做底數,n叫做指數。當a看作a的n次乘方的結果時,也可讀作「a的n次冪」或「a的n次方」。

3、合並同類項:把多項式中的同類項合並成一項,叫做合並同類項。

4、在同一平面內,到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓。

5、除法的估算方法是多樣的,通常我們將被除數(三位數)看成一個接近它的整百整十數,除數(一位數)不變,然後計算。或者按照乘法口訣把被除數估成一個合適的數,再計算。

『伍』 九年級上冊數學書內容有哪些

九年級數學分為代數、幾何兩個部分。

代數內容有二次函數,統計初步二章;幾何內容有相似三角形、銳角三角比、圓與正多邊形三章。初三數學的學習,是以前兩年數學學習為基礎的,是對已學知識的加深、拓寬、綜合與延續,是初中數學學習的重點,也是中考考查的重點。

相信很多同學已經體會到這樣一件事,就是初一的數學比小學難,初二的數學比初一的數學更難,初三的數學已經有同學上課聽不懂,盯著黑板發呆的人不少。

初三數學是以前兩年的學習內容為基礎的,可以用來復習、鞏固相關的內容,同時新知識的學習常常由舊知識引入或要用到前面所學過的內容,甚至是已有知識的綜合、提高與延續。因此在學習中,要注意前後知識的聯系,以便達到鞏固與提高的目的。

其實,要學好初中數學,初一的時候一定要打好基礎,初二的時候成績要穩得住,初三復習階段需要多總結錯題,這樣中考才能考出理想的成績。

為了幫助學生學好初三數學,我給大家分享一份初三數學上冊的全冊知識點總結,、希望這份資料能夠補上孩子的不足,好好利用這份資料就會在開學考試的時候考出好成績。正好現在有時間,好好學習吧!

『陸』 初中數學常考知識點有哪些

1、一元二次方程的基本概念
一元二次方程經過整理都可化成一般形式ax²+bx+c=0(a≠0)。直角坐標系與點的位置,特殊三角函數值,圓的基本性質,直線與圓的位置關系等等。
2、一元二次方程
只含有一個未知數(一元),並且未知數項的最高次數是2(二次)的整式方程叫做一元二次方程
。一元二次方程經過整理都可化成一般形式ax²+bx+c=0(a≠0)。其中ax²叫作二次項,a是二次項系數;bx叫作一次項,b是一次項系數;c叫作常數項。
3、特殊三角函數
特殊三角函數值一般指在30°,45°,60°等角的三角函數值。這些角度的三角函數值是經常用到的。並且利用兩角和與差的三角函數公式,可以求出一些其他角度的三角函數值。cos30°=1,tan45°=1。
4、圓的基本性質
半圓或直徑所對的圓周角是直角。
任意一個三角形一定有一個外接圓。
在同一平面內,到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓。
在同圓或等圓中,相等的圓心角所對的弧相等。
同弧所對的圓周角等於圓心角的一半。
同圓或等圓的半徑相等。
過三個點一定可以作一個圓。
長度相等的兩條弧是等弧。
在同圓或等圓中,相等的圓心角所對的弧相等。
經過圓心平分弦的直徑垂直於弦。

『柒』 九年級上學期數學知識點

九年級上學期數學期末復習計劃

本次期末考試一共考查九上全書和九下一二章的內容,這些內容是:證明(二)、證明(三)、一元二次方程,視圖與投影,反比例函數,頻數與頻率,三角函數,二次函數。
我的復習計劃大致分三輪:
第一輪:將各章內容分類劃分,細化各章知識點,採取學生先自主復習,作出復習手抄報,讓學生總結各章重點及難點,以及本章中的重點例題和練習題,再利用上課時間對學生的總結全面細化,彌補其不足之處,提高復習效率,達到學生看見題目能夠自己分析出考查哪章節知識點的目的。主要將各章內容分成以下幾部分:
第一部分:三角函數;
第二部分:二次函數,反比例函數,一元二次方程;
第三部分:頻數與頻率
第四部分:證明(二),證明(三),視圖與投影
其中一、二部分為重點,三四部分在習題中同時展開復習,大致需要一個星期時間。
第二輪:通過這次考試的題型有針對性地復習,利用教研活動各校所出模擬試題,整理分類,分為以下專題展開:
一、填空選擇專題,全面考察各章細小知識點;
二、幾何及三角函數專題;
三、二次函數及動點專題。
由於這些類型的題目是學生感到有難度,且在考試中最易丟分的題目,因此特別針對這些內容作專題訓練,以強化學生的問題分析能力。大致四天左右時間。
第三輪:綜合檢測,選取三至四份質量比較高的綜合試題,對學生進行實戰練習,全面考查復習成果,講評中注意精講,盡量讓學生自己解決問題。

『捌』 初三的數學知識點

一、相似三角形(7個考點)

考點1:相似三角形的概念、相似比的意義、畫圖形的放大和縮小

考核要求:

(1)理解相似形的概念;

(2)掌握相似圖形的特點以及相似比的意義,能將已知圖形按照要求放大和縮小。

考點2:平行線分線段成比例定理、三角形一邊的平行線的有關定理

考核要求:理解並利用平行線分線段成比例定理解決一些幾何證明和幾何計算。

注意:被判定平行的一邊不可以作為條件中的對應線段成比例使用。

考點3:相似三角形的概念

考核要求:以相似三角形的概念為基礎,抓住相似三角形的特徵,理解相似三角形的定義。

考點4:相似三角形的判定和性質及其應用

考核要求:熟練掌握相似三角形的判定定理(包括預備定理、三個判定定理、直角三角形相似的判定定理)和性質,並能較好地應用。

考點5:三角形的重心

考核要求:知道重心的定義並初步應用。

二、銳角函數值(2個考點)

考點7:銳角三角比(銳角的正弦、餘弦、正切、餘切)的概念,30度、45度、60度角的三角比值。

考點8:解直角三角形及其應用

考核要求:

(1)理解解直角三角形的意義;

(2)會用銳角互余、銳角三角比和勾股定理等解直角三角形和解決一些簡單的實際問題,尤其應當熟練運用特殊銳角的三角比的值解直角三角形。

三、二次函數(4個考點)

考點9:函數以及函數的定義域、函數值等有關概念,函數的表示法,常值函數

考核要求:

(1)通過實例認識變數、自變數、因變數,知道函數以及函數的定義域、函數值等概念;

(2)知道常值函數;

(3)知道函數的表示方法,知道符號的意義。

考點10:用待定系數法求二次函數的解析式

考核要求:

(1)掌握求函數解析式的方法;

(2)在求函數解析式中熟練運用待定系數法。

注意求函數解析式的步驟:一設、二代、三列、四還原。

考點11:畫二次函數的圖像

考核要求:

(1)知道函數圖像的意義,會在平面直角坐標系中用描點法畫函數圖像

(2)理解二次函數的圖像,體會數形結合思想;

(3)會畫二次函數的大致圖像。

考點12:二次函數的圖像及其基本性質

考核要求:

(1)藉助圖像的直觀、認識和掌握一次函數的性質,建立一次函數、二元一次方程、直線之間的聯系;

(2)會用配方法求二次函數的頂點坐標,並說出二次函數的有關性質。

注意:

(1)解題時要

『玖』 初三數學基礎知識點有哪些

初三數學基礎知識點:

一、方程(組)與不等式(組)

1、各種方程(組)的解法要熟練掌握,方程(組)無解的意義是找不到等式成立的條件。

2、運用等式性質時,兩邊同除以一個數必須要注意不能為O的情況,還要關註解方程與方程組的基本思想。消元降次的主要陷阱在於消除了一個帶X公因式時回頭檢驗。

3、運用不等式的性質3時,容易忘記改不變號的方向而導致結果出錯。

4、關於一元二次方程的取值范圍的題目易忽視二次項系數不為0。

二、有理數

1、有理數的加法運算

同號兩數來相加,絕對值加不變號。

異號相加大減小,大數決定和符號。

互為相反數求和,結果是零須記好。

「大」減「小」是指絕對值的大小。

2、有理數的減法運算

減正等於加負,減負等於加正。

有理數的乘法運算符號法則。

同號得正異號負,一項為零積是零。

三、二次函數解析式的表示方法

1、一般式:y=ax2+bx+c(a,b,c為常數,a≠0),如:y=2x2+3x+4;

2、頂點式:y=a(x-h)2+k(a,h,k為常數,a≠0),如:y=2(x-5)2+3;

3、兩根式:y=a(x-x1)(x-x2)(a≠0,x1,x2是拋物線與x軸兩交點的橫坐標),如:y=2(x-1)(x+3)。

『拾』 初中數學中考復習知識點

一、相似三角形(7個考點)

考點1:相似三角形的概念、相似比的意義、畫圖形的放大和縮小

考核要求:

(1)理解相似形的概念;

(2)掌握相似圖形的特點以及相似比的意義,能將已知圖形按照要求放大和縮小。

考點2:平行線分線段成比例定理、三角形一邊的平行線的有關定理

考核要求:理解並利用平行線分線段成比例定理解決一些幾何證明和幾何計算。

注意:被判定平行的一邊不可以作為條件中的對應線段成比例使用。

考點3:相似三角形的概念

考核要求:以相似三角形的概念為基礎,抓住相似三角形的特徵,理解相似三角形的定義。

考點4:相似三角形的判定和性質及其應用

考核要求:熟練掌握相似三角形的判定定理(包括預備定理、三個判定定理、直角三角形相似的判定定理)和性質,並能較好地應用。

二、銳角三角比(2個考點)

考點5:銳角三角比(銳角的正弦、餘弦、正切、餘切)的概念,30度、45度、60度角的三角比值。

考點6:解直角三角形及其應用

(1)理解解直角三角形的意義;

(2)會用銳角互余、銳角三角比和勾股定理等解直角三角形和解決一些簡單的實際問題,尤其應當熟練運用特殊銳角的三角比的值解直角三角形。

三、二次函數(4個考點)

考點7:函數以及函數的定義域、函數值等有關概念,函數的表示法,常值函數

(1)通過實例認識變數、自變數、因變數,知道函數以及函數的定義域、函數值等概念;

(2)知道常值函數;

(3)知道函數的表示方法,知道符號的意義。

考點8:用待定系數法求二次函數的解析式

(1)掌握求函數解析式的方法;

(2)在求函數解析式中熟練運用待定系數法。

注意求函數解析式的步驟:一設、二代、三列、四還原。

考點9:畫二次函數的圖像

(1)知道函數圖像的意義,會在平面直角坐標系中用描點法畫函數圖像

(2)理解二次函數的圖像,體會數形結合思想;

(3)會畫二次函數的大致圖像。

考點10:二次函數的圖像及其基本性質

(1)藉助圖像的直觀、認識和掌握一次函數的性質,建立一次函數、二元一次方程、直線之間的聯系;

(2)會用配方法求二次函數的頂點坐標,並說出二次函數的有關性質。

注意:

(1)解題時要數形結合;

(2)二次函數的平移要化成頂點式。

四、圓的相關概念(6個考點)

考點11:圓心角、弦、弦心距的概念

考核要求:清楚地認識圓心角、弦、弦心距的概念,並會用這些概念作出正確的判斷。

考點12:圓心角、弧、弦、弦心距之間的關系

考核要求:認清圓心角、弧、弦、弦心距之間的關系,在理解有關圓心角、弧、弦、弦心距之間的關系的定理及其推論的基礎上,運用定理進行初步的幾何計算和幾何證明。

考點13:垂徑定理及其推論

垂徑定理及其推論是圓這一板塊中最重要的知識點之一。

考點14:直線與圓、圓與圓的位置關系及其相應的數量關系

直線與圓的位置關系可從與之間的關系和交點的個數這兩個側面來反映。在圓與圓的位置關系中,常需要分類討論求解。

考點15:正多邊形的有關概念和基本性質

考核要求:熟悉正多邊形的有關概念(如半徑、邊心距、中心角、外角和),並能熟練地運用正多邊形的基本性質進行推理和計算,在正多邊形的計算中,常常利用正多邊形的半徑、邊心距和邊長的一半構成的直角三角形,將正多邊形的計算問題轉化為直角三角形的計算問題。

五、數據整理和概率統計(9個考點)

考點16:確定事件和隨機事件

(1)理解必然事件、不可能事件、隨機事件的概念,知道確定事件與必然事件、不可能事件的關系;

(2)能區分簡單生活事件中的必然事件、不可能事件、隨機事件。

考點17:事件發生的可能性大小,事件的概率

(1)知道各種事件發生的可能性大小不同,能判斷一些隨機事件發生的可能事件的大小並排出大小順序;

(2)知道概率的含義和表示符號,了解必然事件、不可能事件的概率和隨機事件概率的取值范圍;

(3)理解隨機事件發生的頻率之間的區別和聯系,會根據大數次試驗所得頻率估計事件的概率。

(1)在給可能性的大小排序前可先用「一定發生」、「很有可能發生」、「可能發生」、「不太可能發生」、「一定不會發生」等詞語來表述事件發生的可能性的大小;

(2)事件的概率是確定的常數,而概率是不確定的,可是近似值,與試驗的次數的多少有關,只有當試驗次數足夠大時才能更精確。

考點18:等可能試驗中事件的概率問題及概率計算

考核要求

(1)理解等可能試驗的概念,會用等可能試驗中事件概率計算公式來計算簡單事件的概率;

(2)會用枚舉法或畫「樹形圖」方法求等可能事件的概率,會用區域面積之比解決簡單的概率問題;

(3)形成對概率的初步認識,了解機會與風險、規則公平性與決策合理性等簡單概率問題。

(1)計算前要先確定是否為可能事件;

(2)用枚舉法或畫「樹形圖」方法求等可能事件的概率過程中要將所有等可能情況考慮完整。

考點19:數據整理與統計圖表

(1)知道數據整理分析的意義,知道普查和抽樣調查這兩種收集數據的方法及其區別;

(2)結合有關代數、幾何的內容,掌握用折線圖、扇形圖、條形圖等整理數據的方法,並能通過圖表獲取有關信息。

考點20:統計的含義

(1)知道統計的意義和一般研究過程;

(2)認識個體、總體和樣本的區別,了解樣本估計總體的思想方法。

考點21:平均數、加權平均數的概念和計算

(1)理解平均數、加權平均數的概念;

(2)掌握平均數、加權平均數的計算公式。注意:在計算平均數、加權平均數時要防止數據漏抄、重抄、錯抄等錯誤現象,提高運算準確率。

考點22:中位數、眾數、方差、標准差的概念和計算

(1)知道中位數、眾數、方差、標准差的概念;

(2)會求一組數據的中位數、眾數、方差、標准差,並能用於解決簡單的統計問題。

(1)當一組數據中出現極值時,中位數比平均數更能反映這組數據的平均水平;

(2)求中位數之前必須先將數據排序。

考點23:頻數、頻率的意義,畫頻數分布直方圖和頻率分布直方圖

(1)理解頻數、頻率的概念,掌握頻數、頻率和總量三者之間的關系式;

(2)會畫頻數分布直方圖和頻率分布直方圖,並能用於解決有關的實際問題。解題時要注意:頻數、頻率能反映每個對象出現的頻繁程度,但也存在差別:在同一個問題中,頻數反映的是對象出現頻繁程度的絕對數據,所有頻數之和是試驗的總次數;頻率反映的是對象頻繁出現的相對數據,所有的頻率之和是1.

考點24:中位數、眾數、方差、標准差、頻數、頻率的應用

(1)了解基本統計量(平均數、眾數、中位數、方差、標准差、頻數、頻率)的意計算及其應用,並掌握其概念和計算方法;

(2)正確理解樣本數據的特徵和數據的代表,能根據計算結果作出判斷和預測;

(3)能將多個圖表結合起來,綜合處理圖表提供的數據,會利用各種統計量來進行推理和分析,研究解決有關的實際生活中問題,然後作出合理的解決。