當前位置:首頁 » 基礎知識 » 四到六年級的數學所有知識
擴展閱讀
公共基礎app題庫哪個好 2025-01-16 08:13:07
室長怎麼管理同學 2025-01-16 08:10:44

四到六年級的數學所有知識

發布時間: 2022-07-25 03:28:00

㈠ 求人教版小學數學四到六年級所學的內容。

人教版小學數字四年級到六年級的內容大綱,知識點,我們都整理成集,分享給你,希望對你有幫助。

《小學階段語文、英語、數字、音樂、美術、體育、自然、科學等》網路網盤資源大全

鏈接:https://pan..com/s/1znmI8mJTas01m1m03zCRfQ

?pwd=1234

提取碼:1234

對於小學階段所涉及到的各科各類資料,我拍改們都收集、歸類並定期更新。歡迎有需求的家長、老師收藏。

㈡ 小學數學1到6年級全部重點

回答

整數、自然數、正數、負數、分數、小數
計數單位和數位
計數單位、數位、十進制計數法。
數的改寫(省略)
1.把多位數改寫成「萬」、「億」
直接改寫:
先把原數小數點向左移動4位或8位(小數部分的末尾是0要劃掉),然後再加萬或億,中間要用「=」連接。
省略尾數改寫成近似數:
用「四捨五入法」省略萬位或億位後面的尾數,再在數的後面加萬或億,得出的是近似數,中間要用「≈」連接。
2.求小數近似數。
根據要求,把小數保留到哪一位,就把這一位後面的尾數按照「四捨五入法」省略,如1.5≈2,1.4≈1。中間要用「≈」號。
3.假分數與帶分數或整數之間的互化。
1、將假分數化為帶分數:分母不變,分子除以分母所得整數為帶分數左邊整數部分,余數作分子。
2、將帶分數化為假分數:分母不變,用整數部分與分母的乘積再加原分子的和作為分子。
3、將帶分數化為整數:被除數÷除數= 被除數/除數,除得盡的為整數。
分數、小數與百分數之間的互化。
分數化小數,也就是用分子除以分母,得出的即是小數,小數化為百分數,也就是讓小數乘上100,再在其後面加上個%號就可以了,反之,則反過來就可以了。
比如:1/4化為小數,就是1除以4=0.25 就是小數,再化成百分數就是 0.25*100=25 再加上% 即25%
若把25%化成小數即去掉百分號現除以100 25/100=0.25
0.25化成分數即25/100再化簡得1/4。
數的比較
整數大小比較:兩個整數求差,值為正則前者大於後者,為負則反之。
小數大小比較:同上。
分數大小比較:同上。[2]
數的性質
分數基本性質、小數基本性質、小數點位置移動引起小數大小變化規律。
數的認識
因數、倍數、奇(jī)數、偶數、質數(素數)、合數、分解質因數、最大公因數、最小公倍數。
四則運算的意義和計數方法
加法意義、減法意義、乘法意義、除法意義、加法、減法、除法、乘法、驗算
運算定律與簡便方法、四則混合運算
加法交換律(a b=b a)、加法結合律(a (b c)=(a b) c)、乘法交換律(a*b=b*a)、乘法結合律(a*(b*c)=(a*b)*c)、乘法分配律(a*(b c)=a*b a*c)、連減的性質(a-b-c=a-(b c))、商不變的性質
減法運算性質:a-(b c)=a-b-c a-(b-c)=a-b c
運算分級:加法和減法叫做一級運算;乘法和除法叫做二級運算(簡略)
復合應用題
式與方程
方程
計量單位
長度、面積和體積以及其同類量之間的進率
質量單位和他們之間的進率
1噸=1000千克 一千克=1000克
時間單位進率、人民幣進率
1小時=60分鍾 1分鍾=60秒
1塊=10角
比與比例
正比例、反比例、化簡比、求比值、比與分數、除法聯系、比、比例、可以用比例解應用題
圖形與空間
圖形、空間、周長、面積、側面積、表面積、圖形的變換、圖形與位置、圖形的認識與測量
統計和可能性
統計表、統計圖、平均數、中位數、眾數、可能性
(一)整數
1整數的意義:…像—4,—3,-2,-1,0,1,2,3,…這樣的數叫整數。
2自然數:我們在數物體的時候,用來表示物體個數的1,2,3……叫做自然數。一個物體也沒有,用0表示。
3計數單位
一(個)、十、百、千、萬、十萬、百萬、千萬、億……都是計數單位。
每相鄰兩個計數單位之間的進率都是10。這樣的計數法叫做十進制計數法。
4數位
計數單位按照一定的順序排列起來,它們所佔的位置叫做數位。
5數的整除:整數a除以整數b(b≠0),除得的商是整數而沒...展開全部>
物理好難prince | 4分鍾前
0
小學生數學復習考試全圖
這些知識歸結了小學全部數學重點。這些知識可能在每次考試中以不同形式(填空、選擇、判斷、連線、解答應用題等)出現,也是學生將來進入初中、高中的基礎,所以一定要牢固掌握。
一、 小學生數學法則知識歸類
(一)筆算兩位數加法,要記三條:
1、相同數位對齊;
2、從個位加起;
3、個位滿10向十位進1。
(二)筆算兩位數減法,要記三條:
1、相同數位對齊;
2、從個位減起;
3、個位不夠減從十位退1,在個位加10再減。
(三)混合運算計演算法則:
1、在沒有括弧的算式里,只有加減法或只有乘除法的,都要從左往右按順序去處;
2、在沒有括弧的算式里,有乘除法和加減法的,要先算乘除再算加減;
3、算式里有括弧的要先算括弧裡面的。
(四)四位數的讀法:
1、從高位起按順序讀,千位上是幾讀幾千,百位上是幾讀幾百,依次類推;
2、中間有一個0或兩個0隻讀一個「零」;末位不管有幾個0都不讀。
(五)四位數寫法:
1、從高位起,按照順序寫;
2、幾千就在千位上寫幾,幾百就在百位上寫幾,依次類推,中間或末尾哪一位上一個也沒有,就在哪一位上寫「0」。

(六)四位數減法也要注意三條:
1、相同數位對齊;
2、從個位減起;
3、位數不夠減,從前位退1,在本位加10再減。
(七)一位數乘多位數乘法法則:
1、從個位起,用一位數依次乘多位數中的每一位數;
2、哪一位上乘得的積滿幾十就向前進幾。
(八)除數是一位數的除法法則:
1、從被除數高位除起,每次用除數先試除被除數的前一位數,如果它比除數小再試除前兩位數;
2、除數除到哪一位,就把商寫在那一位上面;每求出一位商,餘下的數必須比除數小。
(九)一個因數是兩位數的乘法法則:
1、先用兩位數個位上的數去乘另一個因數,得數的末位和兩位數個位對齊;
2、再用兩位數十位上的數去乘另一個因數,得數的末位和兩位數十位對齊;
3、然後把兩次乘得的數加起來。
(十)除數是兩位數的除法法則:
1、從被除數高位起,先用除數試除被除數前兩位,如果它比除數小,再試除前三位數;
2、除到被除數的哪一位就在哪一位上面寫商;
3、每求出一位商,餘下的數必須比除數小。
(十一)萬級數的讀法法則:
1、先讀萬級,再讀個級;
2、萬級的數要按個級的讀法來讀,再在後面加上一個「萬」字;
3、每級末位不管有幾個0都不讀,其它數位有一個0或連續幾個0都只讀一個「零」。

(十二)多位數的讀法法則:
1、從高位起,一級一級往下讀;
2、讀億級或萬級時,要按照個級數的讀法來讀,再往後後面加上「億」或「萬」字;
3、每級末尾的0都不讀,其它數位有一個0或連續幾個0都只讀一個「零」。
(十三)小數大小的比較:
比較兩個小數的大小,先看它們整數部分,整數部分大的那個數就大,整數部分相同的,十分位上的數大的那個數就大,十分位數也相同的,百分位上的數大的那個數就大,依次類推。
(十四)小數加減法計演算法則:
計算小數加減法,先把小數點對齊(也就是把相同的數位上的數對齊),再按照整數加減法則進行計算,最後在得數里對齊橫線上的小數點位置,點上小數點。
(十五)小數簡潔的計演算法則:
計算小數乘法,先按照簡潔的法則算出積,再看因數中一共幾位小數,就從積的右邊起數出幾位,點上小數點。
(十六)除數是整數除法的法則:
除數是整數的小數除法,按照整數除法的法則卻除,商的小數點要和被除數小數點對齊,如果除到被除數的末尾仍有餘數,就在余數後面添0再繼續除。
(十七)除數是小數的除法運演算法則:
除數是小數的除法,先移動除數小數點,使它變成整數;除數的小數點向右移幾位,被除數小數點也向...

㈢ 現在小學四到六年級數學主要是學什麼

數字方面:大數(億),小數(帶小數點的數,分數),正數和負數,包括比較大小;
應用題方面:轉入一元一次方程;幾何方面:角、圖形,圖形的識別、計算(面積周長);
擴展知識面方面:統計圖、概率和解決問題的方法.

㈣ 小學六年級數學都學有哪些知識詳細一點

小學六年級數學學的知識有:
上冊:長方體和正方體、分數乘法、分數除法、解決問題的策略(假設法)、分數四則混合運算、百分數
下冊:圓柱和圓錐、扇形統計圖、正反比例

㈤ 六年級數學必考知識點有哪些

六年級數學必考知識點總結如下:

一、倍數與約數

最大公約數:幾個數公有的約數,叫做這幾個數的公約數。公因數有有限個。其中最大的一個叫做這幾個數的最大公約數。

最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數。公倍數有無限個。其中最小的一個叫做這幾個數的最小公倍數。

二、利潤

利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)。

利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。

三、小數

自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。

循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。如3. 141414。

四、分數的倒數

找一個分數的倒數,例如3/4把3/4這個分數的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。 則是4/3。3/4是4/3的倒數,也可以說4/3是3/4的倒數。

五、圓周率:圓的周長與直徑的比值叫做圓周率。

圓的周長除以直徑的商是一個固定的數,把它叫做圓周率,它是一個無限不循環小數(無理數),用字母π表示。計算時,通常取它的近似值,π≈3.14。


㈥ 六年級的數學知識有哪些

分數乘法,分數除法,圓,百分數,統計,,負數,比例,圓柱和圓錐。
上冊:
1、第一單元《位置》
2、第二單元《分數乘法》
分數乘法
解決問題
倒數的認識
整理和復習

3、第三單元《分數除法》
分數除法
解決問題
比和比的應用
整理和復習
4、第四單元《圓》
圓的認識
圓的周長
圓的面積
整理和復習
確定起跑線
5、第五單元《百分數》
百分數的意義和寫法
百分數和分數、小數的互化
用百分數解決問題
整理和復習
6、第六單元《統計》
扇形統計圖
合理存款
7、第七單元《數學廣角》
雞兔同籠
8、第八單元《總復習》
下冊:
一、負數
二、圓柱與圓錐
1.圓柱 圓柱的認識 圓柱的表面積 圓柱的體積
2.圓錐 第二單元整理和復習
三、比例
1.比例的意義和基本性質
2.正比例和反比例的意義
3.比例的應用
比例尺
圖形的放大與縮小
用比例解決問題
第三單元整理和復習
綜合應用:自行車里的數學
四、統計
五、數學廣角
綜合應用:節約用水
六、整理和復習
1.數與代數
數的認識
數的運算
式與方程
常見的量
比和比例
數學思考
2.空間與圖形
圖形的認識與測量

㈦ 1—6年級數學知識點有哪些

舉例如下:


1、整數【正數、0、負數】

⑴一個物體也沒有,用0表示。0和1、2、3……都是自然數。自然數是整數。

⑵最小的一位數是1,最小的自然數是0。

⑶零上4攝氏度記作+4℃;零下4攝氏度記作-4℃。「+4」讀作正四。「-4」讀作負四。 +4也可以寫成4。

⑷像 +4、19、+8844這樣的數都是正數。像-4、-11、-7、-155這樣的數都是負數。

⑸0既不是正數,也不是負數。正數都大於0,負數都小於0。

⑹通常情況下,比海平面高用正數表示,比海平面低用負數表示。

⑺通常情況下,盈利用正數表示,虧損用負數表示。

⑻通常情況下,上車人數用正數表示,下車人數用負數表示。

⑼通常情況下,收入用正數表示,支出用負數表示。

⑽通常情況下,上升用正數表示,下降用負數表示。

2、小數【有限小數、無限小數】

⑴分母是10、100、1000……的分數都可以用小數表示。一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾……

⑵整數和小數都是按照十進制計數法寫出的數,個、十、百……以及十分之一、百分之一……都是計數單位。每相鄰兩個計數單位間的進率都是10。

⑶每個計數單位所佔的位置,叫做數位。數位是按照一定的順序排列的。

⑷小數的性質:小數的末尾添上「0」或去掉「0」,小數的大小不變。

⑸根據小數的性質,通常可以去掉小數末尾的「0」,把小數化簡。

⑹比較小數大小的一般方法:先比較整數部分的數,再依次比較小數部分十分位上的數,百分位上的數,千分位上的數,從左往右,如果哪個數位上的數大,這個小數就大。

⑺把一個數改寫成用「萬」或「億」作單位的數,在萬位或億位右邊點上小數點,再在數的後面添寫「萬」字或「億」字。

⑻求小數近似數的一般方法:

①先要弄清保留幾位小數;

②根據需要確定看哪一位上的數;3用「四捨五入」的方法求得結果。

3、分數【真分數、假分數】

⑴把單位「1」平均分成若干份,表示這樣的一份或幾份的數叫做分數。表示其中一份的數,是這個分數的分數單位。

⑵兩個數相除,它們的商可以用分數表示。即:a÷b=a/b(b≠0)。

⑶小數和分數的意義可以看出,小數實際上就是分母是10、100、1000…的分數。

⑷分數可以分為真分數和假分數。

⑸分子小於分母的分數叫做真分數。真分數小於1。

⑹分子大於或等於分母的分數叫做假分數。假分數大於或等於1。

⑺分子和分母只有公因數1的分數叫做最簡分數。

⑻分數的基本性質:分數的分子和分母同時乘或除以相同的數(零除外),分數的大小不變。

⑼小數的性質和分數的基本性質一致的,應用分數的基本性質,可以通分和約分。

4、百分數【稅率、利息、折扣、成數】

表示一個數是另一個數的百分之幾的數叫做百分數。百分數也叫百分率或百分比,百分數通常用「%」表示。

㈧ 六年級數學必考知識點有哪些

一、分數

1、分數乘法:分數乘法的意義與整數乘法的意義相同,就是求幾個相同加數和的簡便運算。

2、分數乘法的計演算法則:分數乘整數,用分數的分子和整數相乘的積作分子,分母不變;分數乘分數,用分子相乘的積作分子,分母相乘的積作分母。但分子分母不能為零。

3、分數乘法意義:分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。一個數與分數相乘,可以看作是求這個數的幾分之幾是多少。

4、分數乘整數:數形結合、轉化化歸5.倒數:乘積是1的兩個數叫做互為倒數。

二、百分數

1、定義:百分數是表示一個數是另一個數的百分之幾。百分數也叫做百分率或百分比。百分數通常不寫成分數的形式,而在原來的分子後面加上百分號「%」來表示。例如:百分之九十,90%;百分之一百零八點五,108.5%......百分數在工農業生產、科學技術、各種實驗中有著十分廣泛的應用,特別是在進行調查統計、分析比較時,經常要用到百分數。

2、百分數的意義:是能在生產生活中能將事物占總體的比例形容的更加完整,讓省去許多不必要的言語,簡易而恰當。

三、分數除法

1、分數除法:分數除法是分數乘法的逆運算。

2、分數除法計演算法則:甲數除以乙數(0除外),等於甲數乘乙數的倒數。

四、比例

1、在比例里,兩個外項的乘積等於兩個內項的乘積。比例的性質用於解比例。

2、比的意義是兩個數的除又叫做兩個數的比,而比例的意義是表示兩個比相等的式子是叫做比例。比是表示兩個數相除,有兩項;比例是一個等式,表示兩個比相等,有四項。因此,比和比例的意義也有所不同。

五、數量關系

1份數量×份數=總量。

總量÷1份數量=份數。

總量÷另一份數=另一每份數量。

㈨ 小學四到六年級數學公式及概念

小學一至六年級的數學公式
基本公式:
1 每份數×份數=總數
總數÷每份數=份數
總數÷份數=每份數
2 1倍數×倍數=幾倍數
幾倍數÷1倍數=倍數
幾倍數÷倍數=1倍數
3 速度×時間=路程
路程÷速度=時間
路程÷時間=速度
4 單價×數量=總價
總價÷單價=數量
總價÷數量=單價
5 工作效率×工作時間=工作總量
工作總量÷工作效率=工作時間
工作總量÷工作時間=工作效率
6 加數+加數=和
和-一個加數=另一個加數
7 被減數-減數=差
被減數-差=減數
差+減數=被減數
8 因數×因數=積
積÷一個因數=另一個因數
9 被除數÷除數=商
被除數÷商=除數
商×除數=被除數
小學數學圖形計算公式:
1 正方形
C周長 S面積 a邊長
周長=邊長×4
C=4a
面積=邊長×邊長
S=a×a
2 正方體
V:體積 a:棱長
表面積=棱長×棱長×6
S表=a×a×6
體積=棱長×棱長×棱長
V=a×a×a
3 長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4 長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積=(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
S面積 C周長 π d=直徑 r=半徑
(1)周長=直徑×π=2×π×半徑
C=πd=2πr
(2)面積=半徑×半徑×n
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
和差問題的公式:
總數÷總份數=平均數
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)
植樹問題
1 非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
棱長總和:
長方體棱長和=(長+寬+高)
正方體棱長和=棱長×12
熟記下列正反比例關系:
正比例關系:
正方形的周長與邊長成正比例關系
長方形的周長與(長+寬)成正比例關系
圓的周長與直徑成正比例關系
圓的周長與半徑成正比例關系
圓的面積與半徑的平方成正比例關系
常用數量關系:
1.路程=速度×時間 速度=路程÷時間 時間=路程÷速度
工作總量=工作效率×工作時間 工作效率=工作總量÷工作時間 工作時間=工作總量÷工作效率
總價=單價×數量 單價=總價÷數量 數量=總價÷單價
總產量=單產量×面積 單產量=總產量÷面積 面積=總產量÷單產量
單位換算:
長度單位:
一公里=1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米
面積單位:
1平方千米=100公頃 1公頃=100公畝 1公畝=100平方米
1平方千米=1000000平方米 1公頃=10000平方米 1平方米=100平方分米
1平方分米=100平方厘米 1平方厘米=100平方毫米
體積單位:
1立方千米=1000000000立方米 1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米 1立方分米=1升 1立方厘米=1毫升 1升=1000毫升
重量單位:
1噸=1000千克 1千克=1000克
時間單位:
一世紀=100年 一年=四季度 一年=12月 一年=365天(平年) 一年=366天(閏年)
一季度=3個月 一個月= 3旬(上、中、下) 一個月=30天(小月) 一個月=31天(大月)
一星期=7天 一天=24小時 一小時=60分 一分=60秒
一年中的大月:一月、三月、五月、七月、八月、十月、十二月(七個月)
一年中的小月:四月、六月、九月、十一月(四個月)
特殊分數值:
=0.5=50% = 0.25 = 25% = 0.75 = 75%
= 0.2 = 20% = 0.4 = 40% = 0.6 = 60% = 0.8 = 80%
=0.125=12.5% = 0.375 = 37.5% = 0.625 = 62.5% = 0.875 = 87.5%
算術
1、加法交換律:兩數相加交換加數的位置,和不變。 (2)你最敬重卑微者的哪一點,為什麼?
2、加法結合律:a + b = b + a
3、乘法交換律:a × b = b × a
4、乘法結合律:a × b × c = a ×(b × c)
5、乘法分配律:a × b + a × c = a × b + c
6、除法的性質:a ÷ b ÷ c = a ÷(b × c)
7、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O。 簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
8、有餘數的除法: 被除數=商×除數+余數
方程、代數與等式
等式:等號左邊的數值與等號右邊的數值相等的式子叫做等式。 等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
方程式:含有未知數的等式叫方程式。
一元一次方程式:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
代數: 代數就是用字母代替數。
代數式:用字母表示的式子叫做代數式。如:3x =ab+c
分數
分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
倒數的概念:1.如果兩個數乘積是1,我們稱一個是另一個的倒數。這兩個數互為倒數。1的倒數是1,0沒有倒數。
分數除以整數(0除外),等於分數乘以這個整數的倒數。
分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小
分數的除法則:除以一個數(0除外),等於乘這個數的倒數。
真分數:分子比分母小的分數叫做真分數。
假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
一個數除以分數,等於這個數乘以分數的倒數。
甲數除以乙數(0除外),等於甲數乘以乙數的倒數。
數量關系計算公式
單價×數量=總價 2、單產量×數量=總產量
速度×時間=路程 4、工效×時間=工作總量
加數+加數=和 一個加數=和+另一個加數
被減數-減數=差 減數=被減數-差 被減數=減數+差
因數×因數=積 一個因數=積÷另一個因數
被除數÷除數=商 除數=被除數÷商 被除數=商×除數

什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3 比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。
什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18
比例的基本性質:在比例里,兩外項之積等於兩內項之積。
解比例:求比例中的未知項,叫做解比例。如3:χ=9:18
正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k( k一定)或kx=y
反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。 如:x×y = k( k一定)或k / x = y

百分數
百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。
把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。
把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。
要學會把小數化成分數和把分數化成小數的換算。
倍數與約數
最大公約數:幾個數公有的約數,叫做這幾個數的公約數。公因數有有限個。其中最大的一個叫做這幾個數的最大公約數。
最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數。公倍數有無限個。其中最小的一個叫做這幾個數的最小公倍數。
互質數: 公約數只有1的兩個數,叫做互質數。相臨的兩個數一定互質。兩個連續奇數一定互質。1和任何數互質。
通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)
約分:把一個分數的分子、分母同時除以公約數,分數值不變,這個過程叫約分。
最簡分數:分子、分母是互質數的分數,叫做最簡分數。分數計算到最後,得數必須化成最簡分數。
質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。
整除
如果c|a, c|b,那麼c|(a±b)
如果,那麼b|a, c|a
如果b|a, c|a,且(b,c)=1, 那麼bc|a
如果c|b, b|a, 那麼c|a
合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。
質因數:如果一個質數是某個數的因數,那麼這個質數就是這個數的質因數。
分解質因數:把一個合數用質因數相成的方式表示出來叫做分解質因數。
倍數特徵:
2的倍數的特徵:各位是0,2,4,6,8。
3(或9)的倍數的特徵:各個數位上的數之和是3(或9)的倍數。
5的倍數的特徵:各位是0,5。
4(或25)的倍數的特徵:末2位是4(或25)的倍數。
8(或125)的倍數的特徵:末3位是8(或125)的倍數。
7(11或13)的倍數的特徵:末3位與其餘各位之差(大-小)是7(11或13)的倍數。
17(或59)的倍數的特徵:末3位與其餘各位3倍之差(大-小)是17(或59)的倍數。
19(或53)的倍數的特徵:末3位與其餘各位7倍之差(大-小)是19(或53)的倍數。
23(或29)的倍數的特徵:末4位與其餘各位5倍之差(大-小)是23(或29)的倍數。
倍數關系的兩個數,最大公約數為較小數,最小公倍數為較大數。
互質關系的兩個數,最大公約數為1,最小公倍數為乘積。
兩個數分別除以他們的最大公約數,所得商互質。
兩個數的與最小公倍數的乘積等於這兩個數的乘積。
兩個數的公約數一定是這兩個數最大公約數的約數。
1既不是質數也不是合數。
用6去除大於3的質數,結果一定是1或5。
奇數與偶數
偶數:個位是0,2,4,6,8的數。
奇數:個位不是0,2,4,6,8的數。
偶數±偶數=偶數 奇數±奇數=奇數 奇數±偶數=奇數
偶數個偶數相加是偶數,奇數個奇數相加是奇數。
偶數×偶數=偶數 奇數×奇數=奇數 奇數×偶數=偶數
相臨兩個自然數之和為奇數,相臨自然數之積為偶數。
如果乘式中有一個數為偶數,那麼乘積一定是偶數。
奇數≠偶數
小數
自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。
純小數:個位是0的小數。
帶小數:各位大於0的小數。
循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。如3. 141414
不循環小數:一個小數,從小數部分起,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做不循環小數。如3. 141592654
無限循環小數:一個小數,從小數部分到無限位數,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做無限循環小數。如3. 141414……
無限不循環小數:一個小數,從小數部分起到無限位數,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做無限不循環小數。如3. 141592654……
利潤
利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)
利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。
內角和
邊數—2乘180

㈩ 1至6年級數學知識總結

小學1至6年級數學主要學習基礎的計算和幾何代數的初步認識。數與代數裡面的基礎概念,如數位、自然數、正數、負數等;圖形與幾何部分的基礎概念,如角、角的定點、角的邊、三角形、四邊形等。

小學一年級:九九乘法口訣表,學會基礎加減乘:背誦好九九乘法口訣表,做到熟悉個位數的相乘;

小學二年級:完善乘法口訣表,牢固一年級知識,學會除混合運算,基礎幾何圖形;

小學三年級:學會乘法交換律,幾何面積周長等,時間量及單位。路程計算,分配律,分數小數;

小學四年級:線角自然數整數,素因數梯形對稱,分數小數計算;

小學五年級:分數小數乘除法,代數方程及平均,比較大小變換,圖形面積體積;

小學六年級:比例百分比概率,圓扇圓柱及圓錐。