A. 如何畫漂亮的數學手抄報
內容的選擇要服務於主題,挑選最適合的內容來展現。一張手抄報的容量有限,切忌內容龐雜,主題不明,精挑細選必不可少。對於一張手抄報,如果以繪畫為主,那麼繪畫能力的高低直接決定了這張手抄報的質量;如果以文字為主,那麼恰到好處的繪畫,也能起到畫龍點睛的作用。所以根據手抄報的主題靈活選擇繪畫題材和自己擅長的方面,揚長避短,提高繪畫質量。當然,製作好手抄報,學習和借鑒的能力也是必須的。
B. 五年級數學手抄報怎麼畫 一等獎
五年級所有單元手抄報 一單元:《分數乘法》
分數乘法(一)
知識點:1、理解分數乘整數的意義.分數乘整數的意義同整數乘法的意義相同,就是求幾個相同加數的和的簡便運算.
2、分數乘整數的計算方法.分母不變,分子和整數相乘的積作分子.能約分的要約成最簡分數.
3、計算時,可以先約分在計算.
分數乘法(二)
知識點:1、結合具體情境,進一步探索並理解分數乘整數的意義,並能正確進行計算.
2、能夠求一個數的幾分之幾是多少.
3、理解打折的含義.例如:九折,是指現價是原價的十分之九.
分數乘法(三)
知識點:1、分數乘分數的計算方法,並能正確進行計算.
分子相乘做分子,分母相乘做分母,能約分的可以先約分.計算結果要求是最簡分數.
2、比較分數相乘的積與每一個乘數的大小.
真分數相乘積小於任何一個乘數;真分數與假分數相乘積大於真分數小於假分數.
二單元:《長方體(一)》
長方體的認識
知識點:1、認識長方體、正方體,了解各部分的名稱.
2、長方體、正方體各自的特點.
頂 點 面 棱
個 數 個 數 形 狀 大小關系 條數 長度關系
8 6 都是長方形,特殊的有兩個相對的面是正方形,其餘四個面是完全一樣的長方形. 相對的面是完全一樣的長方形. 12 可以分為三組,相對的棱平行且相等.
8 6 都是正方形. 每個面都是正方形. 12 長度都相等.
3、知道正方體是特殊的長方體.
4、能計算長方體、正方體的棱長總和.
長方體的棱長總和=(長+寬+高)*4或者是長*4+寬*4+高*4
正方體的棱長總和=棱長*12
靈活運用公式,能求出長方體的長、寬、高或是正方體的棱長.
展開與折疊
知識點:1、認識並了解長方體和正方體的平面展開圖.
2、了解正方體平面展開圖的幾種形式,並以此來判斷.
長方體的表面積
知識點:1、理解表面積的意義.是指六個面的面積之和.
2、長方體和正方體表面積的計算方法.
3、能結合生活中的實際情況,計算圖形的表面積.
露在外面的面
知識點:1、在觀察中,通過不同的觀察策略進行觀察.
如:一種是看每個紙箱露在外面的面,再加到一起;另一種是分別從正面、上面、側面進行不同角度的觀察,看每個角度都能看到多少個面,再加到一起.
2、發現並找出堆放的正方體的個數與露在外面的面的面數的變化規律.
三單元:《分數除法》
倒數
知識點:1、發現倒數的特徵並理解倒數的意義.
如果兩個數的乘積是1,那麼我們稱其中一個數是另一個數的倒數.倒數是對兩個數來說的,並不是孤立存在的.
C. 數學知識點手抄報
你可以把乘法口訣表寫上去,在寫一些關於數學家的故事等,還可以出些題目,或者趣味數學,也可以把數學家的資料寫上去.
故事如,祖 沖 之
祖沖之(公元429~500年)祖籍是現今河北省淶源縣,他是南北朝時代的一位傑出科學家.他不僅是一位數學家,同時還通曉天文歷法、機械製造、音樂等領域,並且是一位天文學家.
祖沖之在數學方面的主要成就是關於圓周率的計算,他算出的圓周率為3.1415926
D. 數學小報應該寫一些什麼內容
數學小報可以寫數學知識點;如下:
1、加法交換律:兩數相加交換加數的位置,和不變。
2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。
3、乘法交換律:兩數相乘,交換因數的位置,積不變。
4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。
如:(2+4)×5=2×5+4×5。
6、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。0除以任何不是0的數都得0。
簡便乘法:被乘數,乘數末尾有0的乘法,可以先把0前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
7、什麼叫等式等號左邊的數值與等號右邊的數值相等的式子叫做等式。
E. 關於數學手抄報
第一寫關於數學的名言
羅素說:「數學是符號加邏輯」
畢達哥拉斯說:「數支配著宇宙」
哈爾莫斯說:「數學是一種別具匠心的藝術」
米斯拉說:「數學是人類的思考中最高的成就」
培根(英國哲學家)說:「數學是打開科學大門的鑰匙」
布爾巴基學派(法國數學研究團體)認為:「數學是研究抽象結構的理論」
黑格爾說:「數學是上帝描述自然的符號」
魏爾德(美國數學學會主席)說:「數學是一種會不斷進化的文化」
柏拉圖說:「數學是一切知識中的最高形式」
考特說:「數學是人類智慧皇冠上最燦爛的明珠」
第二寫關於數學的意義
數學,作為人類思維的表達形式,反映了人們積極進取的意志、縝密周詳的邏輯推理及對完美境界的追求。它的基本要素是:邏輯和直觀、分析和推理、共性和個性。雖然不同的傳統學派可以強調不同的側面,然而正是這些互相對立的力量的相互作用,以及它們綜合起來的努力,才構成了數學科學的生命力、可用性和它的崇高價值。
第三寫關於數學的小故事
數學名人小故事-康托爾
由於研究無窮時往往推出一些合乎邏輯的但又荒謬的結果(稱為「悖論」),許多大數學家唯恐陷進去而採取退避三舍的態度。在1874—1876年期間,不到30歲的年輕德國數學家康托爾向神秘的無窮宣戰。他靠著辛勤的汗水,成功地證明了一條直線上的點能夠和一個平面上的點一一對應,也能和空間中的點一一對應。這樣看起來,1厘米長的線段內的點與太平洋面上的點,以及整個地球內部的點都「一樣多」,後來幾年,康托爾對這類「無窮集合」問題發表了一系列文章,通過嚴格證明得出了許多驚人的結論。康托爾的創造性工作與傳統的數學觀念發生了尖銳沖突,遭到一些人的反對、攻擊甚至謾罵。有人說,康托爾的集合論是一種「疾病」,康托爾的概念是「霧中之霧」,甚至說康托爾是「瘋子」。來自數學權威們的巨大精神壓力終於摧垮了康托爾,使他心力交瘁,患了精神分裂症,被送進精神病醫院。
真金不怕火煉,康托爾的思想終於大放光彩。1897年舉行的第一次國際數學家會議上,他的成就得到承認,偉大的哲學家、數學家羅素稱贊康托爾的工作「可能是這個時代所能誇耀的最巨大的工作。」可是這時康托爾仍然神志恍惚,不能從人們的崇敬中得到安慰和喜悅。1918年1月6日,康托爾在一家精神病院去世。
最後,可以寫關於數學的笑話
小明小學數學考試,回來後他媽問他考得怎麼樣.小明說:"我基本上會做,但有一題3乘7,我怎麼也想不出來.最後打鈴了,我不管三七二十一就寫了個18."
F. 數學手抄報內容!
數學手抄報內容!
初一數學上冊知識點
一、 知識梳理
知識點1:正、負數的概念:我們把像3、2、+0.5、0.03%這樣的數叫做正數,它們都是比0大的數;像-3、-2、-0.5、
-0.03%這樣數叫做負數。它們都是比0小的數。0既不是正數也不是負數。我們可以用正數與負數表示具有相反意義的量。
知識點2:有理數的概念和分類:整數和分數統稱有理數。有理數的分類主要有兩種:
註:有限小數和無限循環小數都可看作分數。
知識點3:數軸的概念:像下面這樣規定了原點、正方向和單位長度的直線叫做數軸。
知識點4:絕對值的概念:
(1) 幾何意義:數軸上表示a的點與原點的距離叫做數a的絕對值,記作|a|;
(2) 代數意義:一個正數的絕對值是它的本身;一個負數的絕對值是它的相反數;零的絕對值是零。
註:任何一個數的絕對值均大於或等於0(即非負數).
知識點5:相反數的概念:
(1) 幾何意義:在數軸上分別位於原點的兩旁,到原點的距離相等的兩個點所表示的數,叫做互為相反數;
(2) 代數意義:符號不同但絕對值相等的兩個數叫做互為相反數。0的相反數是0。
知識點6:有理數大小的比較:
有理數大小比較的基本法則:正數都大於零,負數都小於零,正數大於負數。
數軸上有理數大小的比較:在數軸上表示的兩個數,右邊的數總比左邊的大。
用絕對值進行有理數大小的比較:兩個正數,絕對值大的正數大;兩個負數,絕對值大的負數反而小。
G. 四年級數學手抄報內容寫些什麼(A4紙,共四個格)
寫些經典例題
外加些數學家的故事
例如:
數學家高斯的故事
高斯(Gauss 1777~1855)生於Brunswick,位於現在德國中北部。他的祖父是農民,父親是泥水匠,母親是一個石匠的女兒,有一個很聰明的弟弟,高斯這位舅舅,對小高斯很照顧,偶而會給他一些指導,而父親可以說是一名「大老粗」,認為只有力氣能掙錢,學問這種勞什子對窮人是沒有用的。
高斯很早就展現過人才華,三歲時就能指出父親...
H. 四下數學手抄報
四年級下冊數學的手抄報就可以根據課文的內容去編寫一些信息,根據課文的一個條件,他的要求根據老師的一個要求,將一些信息整理好,具備一定的邏輯