1. 小學數學關於小數的知識點
一,小數點後頭的數,都是小於1的。
二,小數點後的第一位,是用1的十分之一當做計量單位的。三,小數點後的第二位是以1的百分之一為單位的。
以此類推。例如:0.26,這里的2就是十分之一的2倍,叫做十分之二。
這里的6就是百分之六。合在一起,就是零點二六,也就是百分之26,差不多有四個0.26才剛剛等於一。
四,小數點前如果是零,這個數叫做純小數。也就是不夠一的數。
小數點前有不是零的數,叫做混小數。例如:8.261,它比8多一些,又不夠9,五,需要提到的是,有被除數除以除數,總除不盡。
有餘數。這一類的商數,形成了《無限循環小數》。
例如2/9=0.222……這樣的叫做純循環小數。又如,0.4322222……22……,在43之後才出現循環的,叫做混循環小數。
六,由於《小數就是分數,分數就是小數》。所以在需要的時候,可以把所有類型的小數,化成分數。
這個問題以後再說。
2. 小數的知識
1、小數點,數學符號,寫作「.」,用於在十進制中隔開整數部分和小數部分。
2、在英語小數的讀法中,小數點讀作"point",整數部份按基數詞的一般讀法,小數部分則分開來讀。如:123.123,讀作:one hundred and twenty-three point one two three3、根據十進制的位值原則,把十進分數仿照整數的寫法寫成不帶分母的形式,這樣的數叫做小數.4、小數點左邊的部分是整數部分,小數點右邊的部分是小數部分.5、整數部分是零的小數叫做純小數,整數部分不是零的小數叫做帶小數.例如0.3是純小數,3.1是帶小數.6、小數末尾添上0或去掉0,小數的大小不變,但計數單位變了。
7、一位小數表示十分之幾,二位小數表示百分之幾,三位小數表示千分之幾……8、小數的計數單位也按照一定的順序排列起來,它們所佔的位置叫做小數的數位.9、小數的讀法有兩種:一種是按照分數的讀法來讀.帶小數的整數部分按整數讀法讀;小數部分按分數讀法讀.例如:0.38讀作百分之三十八,14.56讀作十四又百分之五十六.另一種讀法,整數部分仍按整數的讀法來讀,小數點讀作「點」,小數部分順次讀出每個數位上的數字.例如:0.45讀作零點四五;56.032讀作五十六點零三二.10、小數點每往左移動一位,數值變為原來的十分之一小數點每往後移動一位,數值變為原來的十倍11、中國比歐洲早採用了小數三百多年。第一個將這一概念用文字表達出來的是魏晉時代的劉徽。
12、小數分為有限小數和無限小數13、所有分數都可以表示成小數,所有的有限小數和無限循環小數均能用分數表示。無限不循環小數不能用分數表示。
14、無理數為無限不循環小數。15、保留小數:按要求在捨去部分最高位進行四捨五入運算。
16、積的小數位數與被乘數的小數位數有關。被乘數有幾位小數,積就有幾位小數。
計算小數乘以整數,先按照整數乘法的計算方法算出積,再看被乘數中有幾位小數,就從積的右邊起數出幾位,點上小數點。17、整數部分是零的小數如0.1,絕對值一定小於1。
整數部分是1或1以上的小數如1.1,絕對值一定大於等於1。18、一個小數,從小數部分的某一位起,一個數字或幾個數字,依次不斷地重復出現,這個小數叫做循環小數。
19、一個循環小數的小數部分,依次不斷重復出現的數字叫做這個循環小數的循環節。寫循環小數時,為了簡便,小數的循環部分只寫出第一個循環節。
如果循環節只有一個數字,就在這個數字上加一個圓點, 如果循環節有一個以上的數字,就在這個循環節的首位和末位的數字上各加一個圓點。20、分母是10,100,1000。
的:可以直接化成小數,如,十分之七化成0.7,一百分之九化成0.09分母不是10,100,1000。
的:分子除以分母。
21、一個最簡分數,如果分母分解質因數只含有2、5的,可以化成有限小數;如果含有2、5以外的質因數,就不能化成有限小數,但絕對能化成循環小數。22、如果分母分解質因數不含有2、5,只含有2、5以外的質因數,就能化成純循環小數。
2. 小數乘法怎麼驗算的圖片
小數乘以小數的驗算方法有兩種:
一、積÷一個因數=另一個因數
二、運用乘法交換律:交換因數的位置再乘一遍。
驗算能夠有效地檢查出計算過程中出現的錯誤,但對解題思維上的錯誤無太大用處,通過驗算(用結果來推導條件)所得的數據與原數據比較來建議運算是否正確。
(2)數學乘法小數點的知識點視頻擴展閱讀:
一、乘法一般用交換位置的方法驗算.也可用除法驗算.
1.交換兩因數的位置重算一次;2.用積除以其中一個因數看是不是等於另一個因數。
可以用除法驗算,也可以用其它方法驗算啊。
例如:33x21=693 ,可以這樣驗算,33×21=33×20+33=660+33=693
兩位數乘兩位數的驗算方法有:
1、把這兩個兩位數交換位置再乘一遍.2、用除法進行驗算.
例如:11×12=132
驗算:
1、 12×11=132
2、 132÷11=12
3、 132÷12=11
二、除法驗算有兩種方法:
1、是用乘法驗算:根據被除數=除數×商進行驗算;
2、是用除法驗算:根據除數=被除數÷商進行驗算。
3. 小數點乘法怎麼算
按正常的乘法計算。
查小數點位數,把相乘的乘數的小數點相加。
點小數點,從右往左查位數,查夠相加的位數,然後點上就可以了。
4. 關於小學數學算乘法的小數點位數怎樣定位
先按照整數乘法的法則算出積,再看因數中一共有幾位小數,就從積的右邊起向左數出幾位,點上小數點。
首先判斷這兩個因數一共有幾位小數,積的小數的位數等於兩個因數的小數位數之和,再從積的右邊向左數幾位,前面加上小數點即可。看因數中一共有幾位小數,就從積的右邊起向左數出幾位,點上小數點。
例如:8.64X2.8=24.192
除法
如42除以7。
從4開始除〔從高位到低位〕。除法用豎式計算時,從最高位開始除起,如:42就從最高位十位4開始除起;若除不了,如:4不能除以7,那麼就用最高位和下一位合成一個數來除,直到能除以除數為止;如:42除7中4不能除7,就把4和2合成一個數42來除7,商為6。
5. 小數點的知識點是什麼
小數的意義:把一個整體平均分成10份,100份,1000份……這樣的幾份是十分之幾,百分之幾,千分之幾……可以用小數表示。一位小數表示十分之...
2.
小數比較大小的方法:先比較整數部分,再一一比較十分位,百分位,千分位。
3.
小數點對齊,相同數位相加減。而乘法是最右面對齊。所以小數加減法的對位一定要跟乘法區別開
6. 小數點乘法怎麼計算
小數乘法的運演算法則:
1、先按照整數乘法的法則求出積;
2、再看被乘數和乘數一共有幾位小數,就從積的右邊起數出幾位,點上小數點;
3、如果小數的末尾出現0時,根據小數的基本性質,把小數末尾的0劃去。
例如:6.49×7.5=48.675,其計算步驟如下圖所示:
乘法的新意義
乘法原理:如果因變數f與自變數x1,x2,x3,….xn之間存在直接正比關系並且每個自變數存在質的不同,缺少任何一個自變數因變數f就失去其意義,則為乘法。
在概率論中,一個事件,出現結果需要分n個步驟,第1個步驟包括M1個不同的結果,第2個步驟包括M2個不同的結果,……,第n個步驟包括Mn個不同的結果。那麼這個事件可能出現N=M1×M2×M3×……×Mn個不同的結果。
整數的乘法運算滿足:交換律,結合律,分配律,消去律。
隨著數學的發展, 運算的對象從整數發展為更一般群。
7. 小數乘小數是怎樣計算的
計算方法:先把小數擴大成整數;按整數乘法的法則算出積;再看因數中一共有幾位小數,就從積的右邊起數出幾位點上小數點。
注意:計算結果中,小數部分末尾的0要去掉,把小數化簡;小數部分位數不夠時,要用0佔位。從小數從右開始數,去掉第一個不是0後面的0,小數大小不變。
小數的除法計演算法則:先移動除數的小數點,使它變成整數,除數的小數點也向右移動幾位(位數不夠的補"0"),然後按照除數是整數的除法法則進行計算。
小數,是分數的另一種表現形式。所有分數都可以表示成小數,小數中的圓點叫做小數點,它是一個小數的整數部分和小數部分的分界號。
(7)數學乘法小數點的知識點視頻擴展閱讀:
一個最簡分數可以被化作十進制的有限小數當且僅當其分母只含有質因數2或5或兩者。 類似的,一個最簡分數可以被化作某正整數底數的有限小數當且僅當其分母之質因數為此基底質因數的子集。
所有分數都可以表示成小數,小數中的圓點叫做小數點,它是一個小數的整數部分和小數部分的分界號。其中整數部分是零的小數叫做純小數,整數部分不是零的小數叫做帶小數。
最早使用小數的其實是中國,早在3世紀,我國古代數學家劉徽在解決一個數學問題時,就提出把整數個位以下無法標出名稱的部分稱為微數。小數的名稱是13世紀我國元代數學家朱世傑提出的。在西方,小數出現很晚,直到16世紀,法國數學家克拉維斯首先使用了小數點作為整數部分與小數部分分界的記號。
8. 小數點的知識點有哪些
小數的認識和加減法的知識要點:
1、小數的意義:把一個整體平均分成10份,100份,1000份……這樣的幾份是十分之幾,百分之幾,千分之幾……可以用小數表示。一位小數表示十分之幾,二位小數表示百分之幾,三位小數表示千分之幾。
2、小數比較大小的方法:先比較整數部分,再一一比較十分位,百分位,千分位。
3、小數點對齊,相同數位相加減。而乘法是最右面對齊。所以小數加減法的對位一定要跟乘法區別開。
減法是一種數學運算
表示從集合中移除對象的操作。它的符號是負號(−)。例如,在右邊的圖片,有5−2 蘋果,5蘋果,2個被帶走,就剩下了3個蘋果。因此5−2 = 3。減法表示用不同的對象(包括負數、分數、無理數、向量、小數、函數和矩陣)去除或減少物理和抽象的量。