A. 初一數學上冊有理數的所有公式謝謝、、、
有理數的公式:
①加法的交換律 a+b=b+a。
②加法的結合律 a+(b+c)=(a+b)+c。
③存在數0,使 0+a=a+0=a。
④對任意有理數a,存在一個加法逆元,記作-a,使a+(-a)=(-a)+a=0。
⑤乘法的交換律 ab=ba。
⑥乘法的結合律 a(bc)=(ab)c。
⑦分配律 a(b+c)=ab+ac。
⑧存在乘法的單位元1≠0,使得對任意有理數a,1a=a1=a。
⑨對於不為0的有理數a,存在乘法逆元1/a,使a(1/a)=(1/a)a=1。
有理數的認識
有理數為整數(正整數、0、負整數)和分數的統稱。正整數和正分數合稱為正有理數,負整數和負分數合稱為負有理數。因而有理數集的數可分為正有理數、負有理數和零。由於任何一個整數或分數都可以化為十進制循環小數,反之,每一個十進制循環小數也能化為整數或分數,因此,有理數也可以定義為十進制循環小數。
B. 初一數學上冊各章知識點框架結構
注意:這是北師大版的數學書 人教版和這也差不多
七年級上數學復習提綱
第一章 豐富的圖形世界
1、 認識生活中常見的幾何體特點:圓柱、圓錐、正方體、長方體、稜柱、球
2、 知道常見幾何體的分類,一共分為三類:球體、柱體(圓柱、稜柱、正方體、長方體)、錐體(圓錐、棱錐)
3、 平面圖形折成立體圖形應注意:側面的個數與底面圖形的邊數相等。
4、 圓柱的側面展開圖是一個長方形;展開圖是兩個圓形和一個長方形;
圓錐的展開圖是一個扇形和一個圓形;
正方體展開圖是一個六個小正方形組成的圖形;
長方體的展開圖是與正方體的類似。(容易考到)
5、 特殊立體圖形的截面圖形:
(1)長方體、正方形的截面是:三角形、四邊形(長方形、正方形、梯形、平行四邊形)、五邊形、六邊形。
(2)圓柱的截面是:長方形、圓、橢圓。
(3)圓錐的截面是:三角形、圓、橢圓。
(4)球的截面是:圓
6、我們經常把從前面看到的圖形叫做主視圖,從左面看到的圖叫做左視圖,從上面看到的圖叫做俯視圖。
7、點動成線,線動成面,面動成體。
第二章 有理數
1 、正數與負數
在以前學過的0以外的數前面加上負號「—」的數叫負數。
與負數具有相反意義,即以前學過的0以外的數叫做正數(根據需要,有時在正數前面也加上「+」)。
2 、有理數
(1) 正整數、0、負整數統稱整數,正分數和負分數統稱分數。
整數和分數統稱有理數。0既不是正數,也不是負數。
(2) 通常用一條直線上的點表示數,這條直線叫數軸。
數軸三要素:原點、方向箭頭、單位長度。
在直線上任取一個點表示數0,這個點叫做原點。
(3) 只有符號不同的兩個數叫做互為相反數。
特別的:0的相反數是0
(4) 數軸上表示數a的點與原點的距離叫做數a的絕對值,記作|a|。
一個正數的絕對值是它本身
一個負數的絕對值是它的相反數;
0的絕對值是0;
兩個負數,絕對值大的反而小。
3 、有理數的加減法
(1)有理數加法法則:
①同號兩數相加,取相同的符號,並把絕對值相加。
②絕對值不相等的異號兩數相加,取絕對值較大的數符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加和為0。
③一個數同0相加,仍得這個數。
(2) 有理數減法法則:減去一個數,等於加這個數的相反數。
4、 有理數的乘除法
(1) 有理數乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘。任何數同0相乘,都得0。
(2) 乘積是1的兩個數互為倒數。
(3) 有理數除法法則:除以一個不等於0的數,等於乘這個數的倒數。
(4) 求n個相同因數的積的運算,叫乘方,乘方的結果叫冪。在a的n次方中,a叫做底數,n叫做指數。
負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何次冪都是0
第三章、字母表示數
1、用運算符號把數和表示數的字母連接而成的字母叫做代數式。
2、求代數式值要注意:字母的取值必須確保代數式有意義;字母的取值要確保它本身所表示的數量有意義。
3、代數式的系數應包括這一項前的符號;如果代數式的某一項只含有字母因數,它的系數就是1或-1,而不是0。
4、同類項所含的字母相同;相同字母的指數也相同。
注意:同類項與系數無關,與字母的排列順序無關;幾個常數項也是同類項。
5、合並同類項法則:在合並同類項時,把同類項的系數相加,字母和其指數不變。
第四章 平面圖形及位置關系
1、直線、射線、線段
(1) 直線、射線、線段的區別:直線沒有端點;射線一個端點;線段有兩個端點。
(2) 線段公理:兩點之間,線段最短。
(3)線段的比較方法:疊和法和度量法。
2、角的度量與表示
角的三種表示方法:用三個大寫英文字母表示或用一個大寫英文字母表示(如:<ABC,<A);用希臘字母表示(如<β);用數字表示(如<1,<2)
3、 角的比較與運算
(1)角按大小分可分為銳角、直角、鈍角、平角、周角。
(2)角平分線把一個角分成兩個相等的角,角平分線是一條射線。
4、平行線
(1)如何畫平行線?
(2)平行線的性質1:過直線外一點只有一條直線與已知直線平行;
平行線的性質2:兩條直線都與第三條直線平行,那麼這兩條直線也平行。
5、垂直
(1) 如何畫垂線?
(2) 垂線的性質1:過一點只有一條直線與已知直線垂直。
垂線的性質2:直線外一點與直線上任意一點的連線中,垂線段最短。
垂直的性質3:是點到直線的距離。
第五章 一元一次方程
1、 從算式到方程
方程是含有未知數的等式。
方程都只含有一個未知數x,未知數x的指數都是1次,這樣的方程叫做一元一次方程。
就是求出使方程中等號左右兩邊相等的未知數的值,這個值就是方程的解。
2、等式的性質:
(1). 等式兩邊加(或減)同一個數(或式子),結果仍相等。
(2) 等式兩邊乘同一個數,或除以同一個不為0的數,結果仍相等。
3、把等式一邊的某項變號後移到另一邊,叫做移項。(要移就得變)
4、常用體積公式:
長方形的體積=長X寬X 高 ;
正方形的體積=邊長X邊長X邊長 ;
圓柱的體積=底面積X高 ;
圓錐的體積=底面積X高X1/3。
第六章生活中的數據
1、把一個大於10的數表示成1X10∩的形式(其中1≤a<10,n為正整數),就叫科學計數法。
(從一個數的左邊第一個非0數字起,到末位數字止,所有數字都是這個數的有效數字。)
2、扇形統計圖的性質:各扇形占整個圓的百分比之和為1。
3、製作扇形統計圖的步驟是什麼?
4、各統計圖的特點:
(1)扇形統計圖能清楚地表示出部分與總體的關系;
(2)折線統計圖能清楚地反映數據的趨勢;
(3)條形統計圖能清楚地表現出數據的多少
第七章 可能性
必然事件:事先能肯定它
確定事件{不可能事件:事先能肯定它一定
事件{不確定事件:事先無法肯定它
1、事情發生的可能性的大小:
機會大的不確定事件不一定發生,機會小的不確定事件也不一定不發生,機會大大小隻能說明發生的程度不同。
2、要學會判斷事情發生的可能性的大小。
C. 七年級上冊數學重點,把所有重要的知識點列出來,要簡潔點
初一數學知識點
第一章 有理數
1正數、負數、有理數、相反數、科學記數法、近似數
2數軸:用數軸來表示數
3絕對值:正數的絕對值是它本身;負數的絕對值是它的相反數;零的絕對值是零
4正負數的大小比較:正數大於零,零大於負數,正數大於負數,絕對值大的負數值反而小 。
5有理數的加法法則:
同號兩數相加,取相同的符號,並把絕對值相加;
絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去減小的絕對值;
互為相反數的兩數相加為零;
一個數加上零,仍得這個數。
6有理數的減法(把減法轉換為加法)
減去一個數,等於加上這個數的相反數。
7有理數乘法法則
兩數相乘,同號得正,異號得負,並把絕對值相乘;
任何數同零相乘,都得零。
乘積是一的兩個數互為倒數。
8有理數的除法(轉換為乘法)
除以一個不為零的數,等於乘這個數的倒數。
9有理數的乘方
正數的任何次冪都是正數;
零的任何次冪都是負數;
負數的奇次冪是負數,負數的偶次冪是正數。
10混合運算順序
(1) 先乘方,再乘除,最後加減;
(2) 同級運算,從左到右進行;
(3) 如果有括弧,先做括弧內的運算,按照小括弧、中括弧、大括弧依次進行。
第二章 整式的加減
1 整式:單項式和多項式的統稱;
2整式的加減
(1) 合並同類項
(2) 去括弧
第三章 一元一次方程
1 一元一次方程的認識
2 等式的性質
等式兩邊加上或減去同一個數或者式子,結果仍然相等;
等式兩邊乘同一個數,或除以同一個不為零的數,結果仍相等。
3 解一元一次方程
一般步驟:去分母、去括弧、移項、合並同類項、系數化為一
第四章 圖形認識初步
1 幾何圖形:平面圖和立體圖
2 點、線、面、體
3 直線、射線、線段
兩點確定一條直線;
兩點之間,線段最短
4 角
角的度量度數
角的比較和運算
補角和餘角:等角的補角和餘角相等
初一下冊
第五章 相交線和平行線
1 相交線:對頂角相等
2 垂線
經過一點有且只有一條直線和已知直線垂直;
連接直線外一點與直線上各點的所有線段中,垂線段最短(垂線段最短)
3 平行線
平行公理:經過直線外一點,有且只有一條直線與已知直線平行;
若兩直線都與第三條直線平行,那麼這兩條直線也相互平行;
判定:同位角相等,兩直線平行;
內錯角相等,兩直線平行;
同旁內角互補,兩直線平行。
性質:兩直線平行,同位角相等,內錯角相等,同旁內角互補。
4 命題:判斷一件事情的語句
5 平移
第六章 平面直角坐標系
1 有序數對:(a,b)
2 平面直角坐標系、原點、橫軸、縱軸、象限
3簡單應用:用坐標表示位置;用坐標表示平移。
第七章 三角形
1 與三角形有關的邊:
三角形的邊、高、中線、角平分線、穩定性
2 與三角形有關的角
內角:三角形的內角和是180度
外角:三角形的一個外角等於與它不相鄰的兩個內角的和;
三角形的一個外角大於與它不相鄰的任何一個內角。
2 多邊形
內角:多邊形的內角和為(n-2)*180;
外角:多邊形的外角和為360度。
第八章 二元一次方程組
1 二元一次方程與二元一次方程組的介紹
2 二元一次方程組的解法
代入法 消元法(加減法)
3 二元一次方程組的實際應用
第九章 不等式和不等式組
1 不等式及其解集:含有不等關系號的式子;
2 不等式的性質
性質1 不等式的兩邊加減同一個數或式子,不等號的方向不變;
性質2 不等式兩邊乘或除以同一個正數,不等號的方向不變;
性質3 不等式的兩邊乘或除以同一個負數,不等號的方向改變。
3 一元一次不等式在實際問題中的應用
4 一元一次不等式組及其解法:大大取大;小小取小;大於大的,小於小的取兩邊,大於小的,小於大的去中間。
第十章 實數
1 平方根:正數有兩個平方根,它們互為相反數;
零的平方根是零;
負數沒有平方根;
正數算術平方根是正數;
零的算術平方根是零。
2 立方根:正數的立方根是正數;
負數的立方根是負數;
零的立方根是零。
3 實數:有理數和無理數的統稱。無理數即是無限不循環小數。
我也不知道你要多簡潔的,這算是比較全面的。。。
D. 初一上冊數學有理數概念知識點
有理數包括正數,0,負數。有理數不包括無限不循環小數,正數包括無限不循環小數。
E. 七年級上冊有理數、整式加減思維導圖圖形
一、有理數思維導圖
F. 七年級數學上冊知識點歸納
七年級(上)數學知識點歸納與總結
一、 知識梳理
知識點1:正、負數的概念:我們把像3、2、+0.5、0.03%這樣的數叫做正數,它們都是比0大的數;像-3、-2、-0.5、 -0.03%這樣數叫做負數。它們都是比0小的數。0既不是正數也不是負數。我們可以用正數與負數表示具有相反意義的量。
知識點2:有理數的概念和分類:整數和分數統稱有理數。有理數的分類主要有兩種:
註:有限小數和無限循環小數都可看作分數。
知識點3:數軸的概念:像下面這樣規定了原點、正方向和單位長度的直線叫做數軸。
知識點4:絕對值的概念:
(1) 幾何意義:數軸上表示a的點與原點的距離叫做數a的絕對值,記作|a|;
(2) 代數意義:一個正數的絕對值是它的本身;一個負數的絕對值是它的相反數;零的絕對值是零。
註:任何一個數的絕對值均大於或等於0(即非負數).
知識點5:相反數的概念:
(1) 幾何意義:在數軸上分別位於原點的兩旁,到原點的距離相等的兩個點所表示的數,叫做互為相反數;
(2) 代數意義:符號不同但絕對值相等的兩個數叫做互為相反數。0的相反數是0。
知識點6:有理數大小的比較:
有理數大小比較的基本法則:正數都大於零,負數都小於零,正數大於負數。
數軸上有理數大小的比較:在數軸上表示的兩個數,右邊的數總比左邊的大。
用絕對值進行有理數大小的比較:兩個正數,絕對值大的正數大;兩個負數,絕對值大的負數反而小。
知識點7:有理數加法法則:
(1)同號兩數相加,取相同的符號,並把絕對值相加;
(2)異號兩數相加,絕對值相等時,和為0;絕對值不等時,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值;
(3)一個數與0相加,仍得這個數.
知識點8:有理數加法運算律:
加法交換律:兩個數相加,交換加數的位置,和不變。
加法結合律:三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。
知識點9:有理數減法法則:減去一個數,等於加上這個數的相反數。
知識點10:有理數加減混合運算:根據有理數減法的法則,一切加法和減法的運算,都可以統一成加法運算,然後省略括弧和加號,並運用加法法則、加法運算律進行計算。
知識點11: 乘法與除法
1.乘法法則
2.除法法則
3.多個非零的數相乘除最後結果符號如何確定
知識點12:倒數
1. 倒數概念
2. 如何求一個數的倒數?(注意與相反數的區別)
知識點13:乘方
1. 乘方的概念,乘方的結果叫什麼?
2. 認識底數,指數
3. 正數的任何次冪是_________,零的任何次冪________
負數的偶次冪是_________奇次冪是________
知識點14:混合計算
注意:運算順序是關鍵,計算時要嚴格按照順序運算.考試經常考帶乘方的計算.
知識點15:科學記數法
科學記數法的概念? 注意a的范圍
(人教)
G. 七年級上冊數學知識點歸納
七年級(上)數學知識點歸納與總結
一、 知識梳理
知識點1:正、負數的概念:我們把像3、2、+0.5、0.03%這樣的數叫做正數,它們都是比0大的數;像-3、-2、-0.5、 -0.03%這樣數叫做負數。它們都是比0小的數。0既不是正數也不是負數。我們可以用正數與負數表示具有相反意義的量。
知識點2:有理數的概念和分類:整數和分數統稱有理數。有理數的分類主要有兩種:
註:有限小數和無限循環小數都可看作分數。
知識點3:數軸的概念:像下面這樣規定了原點、正方向和單位長度的直線叫做數軸。
知識點4:絕對值的概念:
(1) 幾何意義:數軸上表示a的點與原點的距離叫做數a的絕對值,記作|a|;
(2) 代數意義:一個正數的絕對值是它的本身;一個負數的絕對值是它的相反數;零的絕對值是零。
註:任何一個數的絕對值均大於或等於0(即非負數).
知識點5:相反數的概念:
(1) 幾何意義:在數軸上分別位於原點的兩旁,到原點的距離相等的兩個點所表示的數,叫做互為相反數;
(2) 代數意義:符號不同但絕對值相等的兩個數叫做互為相反數。0的相反數是0。
知識點6:有理數大小的比較:
有理數大小比較的基本法則:正數都大於零,負數都小於零,正數大於負數。
數軸上有理數大小的比較:在數軸上表示的兩個數,右邊的數總比左邊的大。
用絕對值進行有理數大小的比較:兩個正數,絕對值大的正數大;兩個負數,絕對值大的負數反而小。
知識點7:有理數加法法則:
(1)同號兩數相加,取相同的符號,並把絕對值相加;
(2)異號兩數相加,絕對值相等時,和為0;絕對值不等時,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值;
(3)一個數與0相加,仍得這個數.
知識點8:有理數加法運算律:
加法交換律:兩個數相加,交換加數的位置,和不變。
加法結合律:三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。
知識點9:有理數減法法則:減去一個數,等於加上這個數的相反數。
知識點10:有理數加減混合運算:根據有理數減法的法則,一切加法和減法的運算,都可以統一成加法運算,然後省略括弧和加號,並運用加法法則、加法運算律進行計算。
知識點11: 乘法與除法
1.乘法法則
2.除法法則
3.多個非零的數相乘除最後結果符號如何確定
知識點12:倒數
1. 倒數概念
2. 如何求一個數的倒數?(注意與相反數的區別)
知識點13:乘方
1. 乘方的概念,乘方的結果叫什麼?
2. 認識底數,指數
3. 正數的任何次冪是_________,零的任何次冪________
負數的偶次冪是_________奇次冪是________
知識點14:混合計算
注意:運算順序是關鍵,計算時要嚴格按照順序運算.考試經常考帶乘方的計算.
知識點15:科學記數法
科學記數法的概念? 注意a的范圍一定要採納我哦!