當前位置:首頁 » 基礎知識 » 從古代一直延續到現在的數學知識
擴展閱讀
教育與金融學哪個好 2024-11-06 19:45:48

從古代一直延續到現在的數學知識

發布時間: 2022-07-22 20:51:54

1. 數學小知識

九九歌

九九歌就是我們現在使用的乘法口訣。
遠在公元前的春秋戰國時代,九九歌就已經被人們廣泛使用。在當時的許多著作中,都有關於九九歌的記載。最初的九九歌是從"九九八十一"起到"二二如四"止,共36句。因為是從"九九八十一"開始,所以取名九九歌。大約在公元五至十世紀間,九九歌才擴充到"一一如一"。大約在公元十三、十四世紀,九九歌的順序才變成和現在所用的一樣,從"一一如一"起到"九九八十一"止。
現在我國使用的乘法口訣有兩種,一種是45句的,通常稱為"小九九";還有一種是81句的,通常稱為"大九九"。

阿拉伯數字

在生活中,我們經常會用到0、1、2、3、4、5、6、7、8、9這些數字。那麼你知道這些數字是誰發明的嗎?

這些數字元號原來是古代印度人發明的,後來傳到阿拉伯,又從阿拉伯傳到歐洲,歐洲人誤以為是阿拉伯人發明的,就把它們叫做"阿拉伯數字",因為流傳了許多年,人們叫得順口,所以至今人們仍然將錯就錯,把這些古代印度人發明的數字元號叫做阿拉伯數字。

現在,阿拉伯數字已成了全世界通用的數字元

2. 中國古代偉大數學家及數學發明

中國古代數學,和天文學以及其他許多科學技術一樣,也取得了極其輝煌的成就。可以毫不誇張地說,直到明代中葉以前,在數學的許多分支領域里,中國一直處於遙遙領先的地位。中國古代的許多數學家曾經寫下了不少著名的數學著作。許多具有世界意義的成就正是因為有了這些古算書而得以流傳下來。這些中國古代數學名著是了解古代數學成就的豐富寶庫。

例如現在所知道的最早的數學著作《周髀算經》和《九章算術》,它們都是公元紀元前後的作品,到現在已有兩千年左右的歷史了。能夠使兩千年前的數學書籍流傳到現在,這本身就是一項了不起的成就。

開始,人們是用抄寫的方法進行學習並且把數學知識傳給下一代的。直到北宋,隨著印刷術的發展,開始出現印刷本的數學書籍,這恐怕是世界上印刷本數學著作的最早出現。現在收藏於北京圖書館、上海圖書館、北京大學圖書館的傳世南宋本《周髀算經》、《九章算術》等五種數學書籍,更是值得珍重的寶貴文物。

從漢唐時期到宋元時期,歷代都有著名算書出現:或是用中國傳統的方法給已有的算書作註解,在註解過程中提出自己新的演算法;或是另寫新書,創新說,立新意。在這些流傳下來的古算書中凝聚著歷代數學家的勞動成果,它們是歷代數學家共同留下來的寶貴遺產。

《算經十書》是指漢、唐一千多年間的十部著名數學著作,它們曾經是隋唐時候國子監算學科(國家所設學校的數學科)的教科書。十部算書的名字是:《周髀算經》、《九章算術》、《海島算經》、《五曹算經》、《孫子算經》、《夏侯陽算經》、《張丘建算經》、《五經算術》、《緝古算經》、《綴術》。

這十部算書,以《周髀算經》為最早,不知道它的作者是誰,據考證,它成書的年代當不晚於西漢後期(公元前一世紀)。《周髀算經》不僅是數學著作,更確切地說,它是講述當時的一派天文學學說——「蓋天說」的天文著作。就其中的數學內容來說,書中記載了用勾股定理來進行的天文計算,還有比較復雜的分數計算。當然不能說這兩項演算法都是到公元前一世紀才為人們所掌握,它僅僅說明在現在已經知道的資料中,《周髀算經》是比較早的記載。

對古代數學的各個方面全面完整地進行敘述的是《九章算術》,它是十部算書中最重要的一部。它對以後中國古代數學發展所產生的影響,正像古希臘歐幾里得(約前330—前275)《幾何原本》對西方數學所產生的影響一樣,是非常深刻的。在中國,它在一千幾百年間被直接用作數學教育的教科書。它還影響到國外,朝鮮和日本也都曾拿它當作教科書。

《九章算術》,也不知道確實的作者是誰,只知道西漢早期的著名數學家張蒼(前201—前152)、耿壽昌等人都曾經對它進行過增訂刪補。《漢書·藝文志》中沒有《九章算術》的書名,但是有許商、杜忠二人所著的《算術》,因此有人推斷其中或者也含有許、杜二人的工作。1984年,湖北江陵張家山西漢早期古墓出土《算數書》書簡,推算成書當比《九章算術》早一個半世紀以上,內容和《九章算術》極相類似,有些算題和《九章算術》算題文句也基本相同,可見兩書有某些繼承關系。可以說《九章算術》是在長時期里經過多次修改逐漸形成的,雖然其中的某些演算法可能早在西漢之前就已經有了。正如書名所反映的,全書共分九章,一共搜集了二百四十六個數學問題,連同每個問題的解法,分為九大類,每類算是一章。

從數學成就上看,首先應該提到的是:書中記載了當時世界上最先進的分數四則運算和比例演算法。書中還記載有解決各種面積和體積問題的演算法以及利用勾股定理進行測量的各種問題。《九章算術》中最重要的成就是在代數方面,書中記載了開平方和開立方的方法,並且在這基礎上有了求解一般一元二次方程(首項系數不是負)的數值解法。還有整整一章是講述聯立一次方程解法的,這種解法實質上和現在中學里所講的方法是一致的。這要比歐洲同類演算法早出一千五百多年。在同一章中,還在世界數學史上第一次記載了負數概念和正負數的加減法運演算法則。

《九章算術》不僅在中國數學史上佔有重要地位,它的影響還遠及國外。在歐洲中世紀,《九章算術》中的某些演算法,例如分數和比例,就有可能先傳入印度再經阿拉伯傳入歐洲。再如「盈不足」(也可以算是一種一次內插法),在阿拉伯和歐洲早期的數學著作中,就被稱作「中國演算法」。現在,作為一部世界科學名著,《九章算術》已經被譯成許多種文字出版。

《算經十書》中的第三部是《海島算經》,它是三國時期劉徽(約225—約295)所作。這部書中講述的都是利用標桿進行兩次、三次、最復雜的是四次測量來解決各種測量數學的問題。這些測量數學,正是中國古代非常先進的地圖學的數學基礎。此外,劉徽對《九章算術》所作的注釋工作也是很有名的。一般地說,可以把這些注釋看成是《九章算術》中若干演算法的數學證明。劉徽注中的「割圓術」開創了中國古代圓周率計算方面的重要方法(參見本書第98頁),他還首次把極限概念應用於解決數學問題。

《算經十書》的其餘幾部書也記載有一些具有世界意義的成就。例如《孫子算經》中的「物不知數」問題(一次同餘式解法,參見本書第106頁),《張丘建算經》中的「百雞問題」(不定方程問題)等等都比較著名。而《緝古算經》中的三次方程解法,特別是其中所講述的用幾何方法列三次方程的方法,也是很具特色的。

《綴術》是南北朝時期著名數學家祖沖之的著作。很可惜,這部書在唐宋之際公元十世紀前後失傳了。宋人刊刻《算經十書》的時候就用當時找到的另一部算書《數術記遺》來充數。祖沖之的著名工作——關於圓周率的計算(精確到第六位小數),記載在《隋書·律歷志》中(參見本書第101頁)。

《算經十書》中用過的數學名詞,如分子、分母、開平方、開立方、正、負、方程等等,都一直沿用到今天,有的已有近兩千年的歷史了。

中國古代數學,經過從漢到唐一千多年間的發展,已經形成了更加完備的體系。在這基礎上,到了宋元時期(公元十世紀到十四世紀)又有了新的發展。宋元數學,從它的發展速度之快、數學著作出現之多和取得成就之高來看,都可以說是中國古代數學史上最光輝的一頁。

特別是公元十三世紀下半葉,在短短幾十年的時間里,出現了秦九韶(1202—1261)、李冶(1192—1279)、楊輝、朱世傑四位著名的數學家。所謂宋元算書就指的是一直流傳到現在的這四大家的數學著作,包括:

秦九韶著的《數書九章》(公元1247年);

李冶的《測圓海鏡》(公元1248年)和《益古演段》(公元1259年);

楊輝的《詳解九章演算法》(公元1261年)、《日用演算法》(公元1262年)、《楊輝演算法》(公元1274—1275年),

朱世傑的《算學啟蒙》(公元1299年)和《四元玉鑒》(公元1303年)。

《數書九章》主要講述了兩項重要成就:高次方程數值解法和一次同餘式解法(分別參見本書第119頁和第110頁)。書中有的問題要求解十次方程,有的問題答案竟有一百八十條之多。《測圓海鏡》和《益古演段》講述了宋元數學的另一項成就:天元術(用代數方法列方程,參見本書第121頁);也還講述了直角三角形和內接圓所造成的各線段間的關系,這是中國古代數學中別具一格的幾何學。楊輝的著作講述了宋元數學的另一個重要側面:實用數學和各種簡捷演算法。這是應當時社會經濟發展而興起的一個新的方向,並且為珠算盤的產生創造了條件。朱世傑的《算學啟蒙》不愧是當時的一部啟蒙教科書,由淺入深,循序漸進,直到當時數學比較高深的內容。《四元玉鑒》記載了宋元數學的另兩項成就:四元術(求解高次方程組問題,參見本書第123頁)和高階等差級數、高次招差法(參見本書第131頁)。

宋元算書中的這些成就,和西方同類成果相比:高次方程數值解法比霍納(1786—1837)方法早出五百多年,四元術要比貝佐(1730—1783)①早出四百多年,高次招差法比牛頓(1642—1727)等人早出近四百年。

宋元算書中所記載的輝煌成就再次證明:直到明代中葉之前,中國科學技術的許多方面,是處在遙遙領先地位的。

宋元以後,明清時期也有很多算書。例如明代就有著名的算書《演算法統宗》。這是一部風行一時的講珠算盤的書。入清之後,雖然也有不少算書,但是像《算經十書》、宋元算書所包含的那樣重大的成就便不多見了。特別是在明末清初以後的許多算書中,有 不少是介紹西方數學的。這反映了在西方資本主義發展進入近代科學時期以後我國科學技術逐漸落後的情況,同時也反映了中國數學逐漸融合到世界數學發展總的潮流中去的一個過程。

中國數學發展的歷史表明:中國數學曾經為世界數學的發展作出過卓越的貢獻,只是在近代才逐漸落後了。我們深信,經過努力,中國數學一定能迎頭趕上世界

3. 中國古代數學的歷史

春秋前中國數學的萌芽
我們的先民在從野蠻走向文明的漫長歷程中,逐漸認識了數與形的概念。出土的新石器時期的陶器大多為圓形或其他規則形狀,陶器上有各種幾何圖案,通常還有三個著地點,都是幾何知識的萌芽。先秦典籍中有「隸首作數」、「結繩記事」、「刻木記事」的記載,說明人們從辨別事物的多寡中逐漸認識了數,並創造了記數的符號。殷商甲骨文(公元前14—前11世紀)中已有13個記數單字,最大的數是「三萬」,最小的是「一」。一、十、百、千、萬,各有專名。其中已經蘊含有十進位置值制萌芽。傳說伏羲創造了畫圓的「規」、畫方的「矩」,也傳說黃帝臣子倕[chui垂]是「規矩」和「准繩」的創始人。早在大禹治水時,禹便「左准繩」(左手拿著准繩),「右規矩」(右手拿著規矩)(《史記·禹本紀》)。因此,我們可以說,「規」、「矩」、「准」、「繩」是我們祖先最早使用的數學工具。人們丈量土地面積,測算山高谷深,計算產量多少,粟米交換,制定歷法,都需要數學知識。《周髀〔bi婢〕算經》載商高答周公問,提到用矩測望高深廣遠。相傳西周初年周公(公元前11世紀)制禮,數學成為貴族子弟教育中六門必修課程——六藝之一。不過當時學在官府,數學的發展是相當緩慢的。
春秋時期,隨著鐵器的出現,生產力的提高,中國開始了由奴隸制向封建制的過渡。新的生產關系促進了科學技術的發展與進步。此時王權衰微,疇人四散,私學開始出現。最晚在春秋末年人們已經掌握了完備的十進位置值制記數法,普遍使用了算籌這種先進的計算工具。人們已諳熟九九乘法表、整數四則運算,並使用了分數。
戰國至兩漢中國數學框架的確立
戰國時期,各諸侯國相繼完成了向封建制度的過渡。思想界、學術界諸子林立,百家爭鳴,異常活躍,為數學和科學技術的發展創造了良好的條件。盡管沒有一部先秦的數學著作留傳到後世,但是,人們通過田地及國土面積的測量,粟米的交換,收獲及戰利品的分配,城池的修建,水利工程的設計,賦稅的合理負擔,產量的計算,以及測高望遠等生產生活實踐,積累了大量的數學知識。據東漢初鄭眾記載,當時的數學知識分成了方田、粟米、差分、少廣、商功、均輸、方程、贏不足、旁要九個部分,稱為「九數」。九數確立了《九章算術》的基本框架。
秦始皇結束了列國紛爭,首次建立了中央集權的封建帝國,本應有利於數學的發展。但他的專制政策窒息了百家爭鳴的學術空氣。秦朝的殘暴統治,尤其是焚書坑儒,給中國文化事業造成空前的浩劫。不久,劉邦利用推翻暴秦的農民起義,統一了中國,建立了漢朝,史稱西漢。西漢政府與民生息,社會生產力得到恢復、發展,給數學和科學技術的發展帶來新的活力,人們提出了若干算術難題,並創造了解勾股形、重差等新的數學方法。同時,人們注重先秦文化典籍的收集、整理。作為數學新發展及先秦典籍的搶救工作的結晶,便是《九章算術》的成書。《九章算術》(省稱《九章》)是中國最重要的數學經典,它之於中國和東方數學,大體相當於《幾何原本》之於希臘和歐洲數學。在世界古代數學史上,《九章》與《原本》像兩顆璀燦的明珠,東西輝映。
《九章》之前還有一部《周髀算經》,它本是一部以數學方法闡述蓋天說的天文著作,一般認為於公元前1世紀成書。卷上記載了商高答周公問,陳子答榮方問。前者有勾股定理的特例32+42=52,後者有用勾股定理及比例演算法測太陽高遠及直徑的內容。近年湖北省張家山出土的竹簡《算數書》正在整理,其少廣一問與《九章》少廣章第1問基本相同,兩者的關系有待於研究。
《九章》集先秦到西漢數學知識之大成。據東漢末大學者鄭玄(公元127—200年)引東漢初鄭眾(?—公元83年)說,西漢在先秦九數基礎上又發展出勾股、重差兩類數學方法。魏劉徽說:《九章》是由九數發展而來的,由於秦朝焚書而散壞。西漢張蒼(?—公元前152年)、耿壽昌(公元前1世紀)收集秦火遺殘,加以整理刪補,便成為《九章算術》。方田章提出了完整的分數運演算法則,各種多邊形、圓、弓形等的面積公式;粟米章提出了比例演算法;衰[cui崔]分①章提出了比例分配法則;少廣章給出了完整的開平方、開立方程序;商功章討論各種立體體積公式及工程分配方法;均輸章解決賦役中的合理負擔,也是比例分配問題,還有若干結合西漢社會實際的算術雜題;盈不足章解決盈虧問題及可以用盈不足術解決的一般算術問題;方程章是線性方程組解法,並給出了正負數加減法則;勾股章由旁要發展而成,提出了勾股定理、解勾股形及若干測望問題的方法。全書以計算為中心,有90餘條抽象性演算法、公式,246道例題及其解法,基本上採取演算法統率應用問題的形式。它的許多成就居世界領先地位,奠定了此後中國數學居世界前列千餘年的基礎。《九章》分類不甚合理,沒有任何定義和推導,少數公式不準確,個別公式有錯誤,則是不容諱言的缺點。《九章》的框架、形式、風格和特點深刻影響了中國和東方的數學。
《九章算術》成書後,注家蜂起。《漢書·藝文志》所載《許商算術》、《杜忠算術》(公元前1世紀)估計為研究《九章》的作品。東漢馬續、張衡、劉洪、鄭玄、徐岳、王粲等通曉《九章算術》,或為之作注。這些著作都未傳世,從後來劉徽(今山東鄒平人,生卒不詳)《九章算術注》所反映的信息看,這些研究基本上停留在歸納驗證《九章算術》的正確性方面,理論上未能在《九章》基礎上作出長足進步。
魏晉至唐初中國數學理論體系的建立
《九章算術》之後,中國的數學著述基本上採取兩種方式:一是為《九章算術》作注;二是以《九章算術》為楷模編纂新的著作。經過兩漢社會經濟和科學技術的大發展,到魏晉,中國封建社會進入一個新的階段,庄園農奴制和門閥士族占據了經濟政治舞台的中心。思想文化領域中,儒家的統治地位被削弱,讖緯迷信和繁瑣的經學退出歷史舞台,代之以談三玄——《周易》、《老子》、《莊子》為主的辯難之風。學者們通過析理,探討思維規律,思想界出現了戰國的百家爭鳴以來所未有過的生動局面。與此相適應,數學家重視理論研究,力圖把自先秦到兩漢積累起來的數學知識建立在必然的可靠的基礎之上。劉徽和他的《九章算術注》便是這個時代造就的最偉大的數學家和最傑出的數學著作。
大約與劉徽同時或稍前,有趙爽(又名嬰,字君卿,生卒不詳,估計是三國吳人)的《周髀算經注》,其可觀者為「勾股圓方圖」,用600餘字概括了兩漢以來勾股算術的成果。
劉徽《九章算術注》作於魏景元四年(公元263年),原十卷。前九卷全面論證了《九章》的公式、解法,發展了出入相補原理、截面積原理、齊同原理和率的概念,在圓面積公式和錐體體積公式的證明中引入了無窮小分割和極限思想,首創了求圓周率的正確方法,指出並糾正了《九章》的某些不精確的或錯誤的公式,探索出解決球體積的正確途徑,創造了解線性方程組的互乘相消法與方程新術,用十進分數逼近無理根的近似值等,使用了大量類比、歸納推理及演繹推理,並且以後者為主。第十卷原名重差,為劉徽自撰自注,發展完善了重差理論,此卷後來單行,因第一問為測望一海島的高遠,名之曰《海島算經》。他還著有《九章重差圖》一卷,已佚。劉徽生活在辯難之風興起而尚未流入清談的魏晉之交,受思想界「析理」的影響,對《九章算術》「析理以辭,解體用圖」(《九章算術注·序》),並對各種演算法進行總結分析,認為數學像一株枝條雖分而同本乾的大樹,發自一端,形成了一個完整的理論體系。劉徽博覽群書,諳熟諸子百家,他不迷信古人,敢於創新,實事求是。對他未能解決的牟合方蓋,坦誠直書,表示「以俟能言者」(《九章算術·少廣章注》),表現了一位偉大學者寄希望於後學的坦盪胸懷。
《孫子算經》三卷,常被誤認為春秋軍事家孫武所著,實際上是公元400年前後的作品,作者不詳。這是一部數學入門讀物,給出了籌算記數制度及乘除法則等預備知識,其河上盪杯、雞兔同籠等問題後來在民間廣泛流傳,「物不知數」題則開一次同餘式解法之先河。張丘建(今山東人,生平不詳)著的《張丘建算經》三卷,成書於北魏(5世紀下半葉)。此書補充了等差級數的若干公式,其百雞問題是著名的不定方程問題,後世十分重視。
《綴術》包含了祖沖之(公元429—500年)和兒子祖暅〔geng 更〕之(一作祖暅,生平不詳)的數學貢獻。由於其內容深奧,隋唐算學館學官(相當於今天大學數學系教授)讀不懂,遂失傳。據認為,將圓周率精確到八位有效數字、球體積的解決及含有負系數的二次、三次方程皆是其中的內容。祖沖之,字文遠,祖籍范陽逎(今河北省淶源縣)人。劉宋大明六年(公元462年)造大明歷,使用歲差,改革閏制。他的改革遭到守舊派官僚戴法興的反對,祖沖之不畏權勢,據理駁斥,堅持了反對讖緯迷信,不虛推古人,實事求是的科學精神。他對機械深有研究,製造過水碓、水磨、指南車、千里船、漏壺等,並著《安邊論》、《述異記》等。祖暅之,字景爍。從小愛好數學,巧思入神,極其精微。專心致志之時,雷霆不能入。有一次走路時思考問題,僕射徐勉迎面而來竟然沒有發現,頭撞到徐勉身上,徐勉喚他,他才知道撞了人。其父的《大明歷》經他的努力在梁朝頒行。
北周甄鸞(今河北無極人,生卒不詳)有三部數學著作傳世,即《五曹算經》、《五經算術》、《數術記遺》。前二部內容淺近,無足道者。《數術記遺》一卷,傳本題(東)漢徐岳撰、北周甄鸞注,近人多以為系甄鸞自撰自注,假託徐岳。書中記載了三種大數進位制及14種演算法,其中珠算雖不同於元明的珠算盤,然開後者之先河,似無可疑。
隋唐是中國封建社會經濟政治文化的鼎盛時期,然而數學上除天文歷法研究中劉焯(公元544—610年)創造等間距內插公式(7世紀初)和僧一行(公元683—727年)創造不等間距內插公式(8世紀)外,幾無創造,數學成就及理論水平遠遠低於魏晉南北朝。唐初王孝通(生卒不詳)撰《緝古算經》一卷,解決了若干復雜的土方工程及勾股問題,且都用三次或四次方程解決,是為現存記載三次、四次方程的最早著作。然而,《緝古算經》未必是高於《綴術》的著作。王孝通是歷算博士,曾任太史丞,在天文歷法方面是保守的。他在《上〈緝古算經〉表》中指責《綴術》全錯不通,於理未盡,大約他與當時別的數學家一樣讀不懂《綴術》。他自詡他的《緝古算經》千金不能排其一字,他一旦瞑目,其方法後人莫曉。科學家不必作謙謙君子,但如此狂妄,也是不足取的。
隋唐統治者在國子監設算學館,置算學博士、助教指導學生學習。唐李淳風等奉敕於顯慶元年(公元656年)為《周髀算經》、《九章算術》、《海島算經》、《孫子算經》、《夏侯陽算經》、《綴術》、《張丘建算經》、《五曹算經》、《五經算術》、《緝古算經》等十部算經作注,作為算學館教材,這就是著名的《算經十書》,該書是中國古代數學奠基時期的總結。李淳風等注釋保存了許多寶貴資料,但注釋水平並不高。由於種種原因,算學館實際未培養出像樣的數學家。
唐中葉至宋元中國數學的高潮
經過盛唐的大發展,唐中葉之後,生產關系和社會各方面逐漸產生新的實質性變革,到10世紀下半葉,趙匡胤建立宋朝,統一中國,中國封建社會進入了另一個新的階段,土地所有制以國有為主變為私有為主,租佃農民取代了魏唐的具有農奴身份的部曲、徒附。農業、手工業、商業和科學技術得到更大發展。中國古代四大發明,有三項——印刷術之廣泛應用及活字印刷,火葯用於戰爭,指南針用於航海——完成於唐中葉至北宋。宋秘書省於元豐七年(公元1084年)首次刊刻了《九章算術》等十部算經(時《夏侯陽算經》、《綴術》已失傳,因8世紀下半葉一部韓延《算術》開頭有「夏侯陽曰」雲雲而誤認為是前者而刻入,後者只好付之闕如),是世界上首次出現的印刷本數學著作。後來南宋數學家鮑澣之翻刻了這些刻本,有《九章算術》(半部)、《周髀算經》、《孫子算經》、《五曹算經》、《張丘建算經》五種及《數術記遺》等孤本流傳到現在,是目前世界上傳世最早的印刷本數學著作。宋元數學家賈憲、李冶、楊輝、朱世傑的著作,大都在成書後不久即刊刻。數學著作藉助印刷術得以空前廣泛的流傳,對傳播普及數學知識,其意義尤為深遠。
宋元數學高潮早在唐中葉已見端倪。隨著商業貿易的蓬勃發展,人們改進籌算乘除法,新、舊《唐書》記載了大量這類書籍,可惜絕大多數失傳,只有韓延(生平不詳)《算術》(8世紀)以《夏侯陽算經》的名義流傳下來,該書提出了若干化乘除為加減的捷演算法,並在運算中使用了十進小數,極可寶貴。
11世紀上半葉賈憲(生平不詳)撰《黃帝九章算經細草》,是為北宋最重要的數學著作。賈憲曾任左班殿直(低級武官),是當時著名天文學家、數學家楚衍的學生。還著有《演算法𢽾古集》二卷,已佚。他將《九章算術》未離開題設具體對象甚至數值的術文大都抽象成一般性術文,提高了《九章算術》的理論水平;他對某些類型的數學問題進行概括,比如提出開方作法本源即賈憲三角,作為他提出的立成釋鎖(即開方)法的算表,這是開方問題的綱;他提出了若干新的重要方法,其中最突出的是創造增乘開方法,並提出了開四次方的程序。賈憲的思想與方法對宋元數學影響極大,是宋元數學的主要推動者之一。《黃帝九章算經細草》因被楊輝《詳解九章演算法》抄錄而大部分保存了下來(闕卷一、二及卷三上半部,卷五的一部分)。
大科學家沈括(公元1031—1095年)對數學有獨到的貢獻。在《夢溪筆談》中首創隙積術,開高階等差級數求和問題之先河,又提出會圓術,首次提出求弓形弧長的近似公式。
12世紀北宋劉益(生平不詳)撰《議古根源》,亦失傳。楊輝《田畝比類乘除捷法》引用了它的若干題目與方法。《綴術》失傳之後,開方式的系數仍皆為正數,劉益突破了這個限制,首先引入負系數方程,並創造了益積開方術與減從開方術求其正根,楊輝譽之為「實冠前古」。
1127年金朝入主中原,趙宋南遷,史稱南宋。1234年,蒙古貴族滅金,後來建立元朝。1279年元滅南宋,佔領中國。13世紀中葉至14世紀初,是宋元數學高潮的集中體現,也是中國歷史上留下重要數學著作最多的半個世紀,並形成了南宋統治下的長江中下游與金元統治下的太行山兩側兩個數學中心。
南方中心以秦九韶、楊輝為代表,以高次方程數值解法、同餘式解法及改進乘除捷演算法的研究為主。北方中心則以李冶為代表,以列高次方程的天元術及其解法為主。元統一中國後的朱世傑,則集南北兩個數學中心之大成,達到了中國籌算的最高水平。
1247年秦九韶撰成《數書九章》18卷。秦九韶,字道古,自稱魯郡(今山東省)人,約1202年生於普州安岳縣(今四川省)。他生活在宋元激烈斗爭的南宋末年,並捲入了南宋統治集團戰和兩派的斗爭,支持抗戰派吳潛,屢遭劉克庄等人彈劾。賈似道專權後被貶到梅州(今廣東省),不久(約公元1261年)死於任所,並在死後被追隨賈似道的周密丑詆不堪。他天資聰明好學,對數學、天文、土木建築、詩詞、音律、弓馬等都十分精通。他多次呼籲統治者施仁政,並把數學知識看成開源節流、施仁政、利國利民的有力工具。《數書九章》分大衍、天時、田域、測望、賦役、錢谷、營建、軍旅、市易九類81題,其成就之大,題設之復雜都超過以往算經,有的問題有88個條件,有的答案多達180條,軍事問題之多也是空前的,反映了秦氏對抗元戰爭的關注。大衍總數術系統解決了一次同餘式組解法;正負開方術把以增乘開方法為主導的求高次方程正根的方法發展到十分完備的程度,有的方程高達十次;線性方程組解法完全以互乘相消法取代直除法;提出了與海倫公式等價的三斜求積公式;使用了完整的十進小數表示法,等等,都是其傑出成就。
楊輝共撰五部數學著作,傳世的有四部,居元以前數學家之冠。楊輝,字謙光,錢塘(今杭州市)人,生平不詳,只知在今江浙一帶管錢糧,為政清廉。與其他大家比較,他的著作偏重於教育與普及。1261年,楊輝在劉徽注、李淳風等注釋、賈憲細草的《九章算術》基礎上作解題、比類,並補充了圖、乘除、纂類三卷,是為《詳解九章演算法》,今圖、乘除、方田、粟米、衰分上半部、商功之一部分已佚。商功章的比類中的垛積術發展了沈括的隙積術;「纂類」則打破了《九章算術》的分類格局,按方法分成乘除、互換、合率、分率、衰分、疊積、盈不足、方程、勾股九類。1262年又撰《日用演算法》,著重於改進乘除捷演算法,只有少量題目保存下來。1274年撰《乘除通變本末》三卷。卷上的「習算綱目」是一個從啟蒙到《九章》主要方法的數學教學計劃。本書還總結了九歸等乘除捷演算法及其口訣。次年編纂《田畝比類乘除捷法》二卷,引用了劉益的方法與題目,批評了《五曹算經》四不等田求法的錯誤。同年,編纂《續古摘奇演算法》二卷,對縱橫圖即幻方研究頗有貢獻。後三部書又常合稱為《楊輝演算法》。
十二、十三世紀,北方出現了許多天元術著作,大都失傳,流傳至今的最早的以天元術為主要方法的著作是李冶的《測圓海鏡》12卷(公元1248年)、《益古演段》三卷(公元1259年)。李冶(公元1192—1279年),字仁卿,號敬齋,真定欒城(今河北省)人,生於大興(今北京市)。其父為官清廉正直,李冶自幼受到良好的教養,且愛好數學,青年時便成為名重中原的學者,金詞賦科進士。入元,遂隱居於忻、崞〔guo郭〕(今山西省北部)一帶,在極為艱苦的條件下研究數學及各種學問,常粥𫘸〔zhan氈〕不繼,而聚書環堵。1251年起,主持封龍書院(今河北省)。1257、1260年兩次受到元主忽必烈召見,發表了立法度,正綱紀,進君子,退小人,減刑罰,止征戰,反對種族偏見的政治主張。他被聘為翰林學士。然而他羞於作唯天子、宰相之命是聽的御用文人,不久便以老病為辭回到封龍山。他一生文史著述頗多,僅存《敬齋古今黈》。《測圓海鏡》在洞淵九容基礎上考慮了勾股形與圓的10種基本關系,在卷二一十二中就15個勾股形與圓的關系提出了170個求圓徑長的問題,答案當然都相同。這些問題大都要用天元術列出方程。卷一是全書的理論基礎,包括圓城圖式、識別雜記等部分。圓城圖式以天、地、乾、坤等漢字表示點,是個創舉。識別雜記提出692條公式,除八條外都是正確的,集歷代勾股形與圓的關系研究之大成。《益古演段》64問,這是一部用天元術闡釋蔣周(可能是北宋人)《益古集》的方程列法的著作。其中保存了《益古集》的若干題目和舊術(方法)。
朱世傑有兩部重要著作《算學啟蒙》(公元1299年)、《四元玉鑒》(公元1303年)傳世。朱世傑,字漢卿,號松庭,燕山(今北京市)人,生平不詳。他在13世紀末以數學名家周遊全國20餘年,向他學習數學的人很多。《算學啟蒙》20門,259問,包括了從乘除及其捷演算法到增乘開方法、天元術等當時數學各方面的內容,形成了一個較完整的體系。《四元玉鑒》24門,288問,卷首給出古法七乘方圖(改進了的賈憲三角)等四種五幅圖,以及天元術、二元術、三元術、四元術的解法範例。創造四元消法,解決了多元高次方程組問題,以及高階等差級數求和問題,高次招差法問題,是本書最大的貢獻。此書是中國古代水平最高的數學著作。
楊輝、朱世傑等人對籌算乘除捷演算法的改進、總結,導致了珠算盤與珠算術的產生(大約在元中葉),完成了我國計算工具和計算技術的改革。元中後期,又出現了《丁巨演算法》、賈亨《演算法全能集》、何平子《詳明演算法》等改進乘除捷演算法的著作。
明清數學——從衰落到艱難的復興
元中葉之後,中國數學急劇衰落,元末的幾部著作只是對乘除捷演算法有所改進。明永樂年間(公元1403—1425年)修《永樂大典》,將前此的中國數學著作按起源、各種數學方法及音義、纂類等分類抄錄。漢唐宋元數學著作在明代大都散佚,清中葉修《四庫全書》,中國古算書多賴此重新面世。
明代八股取士,思想禁錮嚴重,學者們很少留心數學。顧應祥、唐順之是明代數學大家,全然不懂天元術和增乘開方法。景泰元年(公元1450年)吳敬撰《九章演算法比類大全》十卷,收集歷代應用題,亦拋棄了增乘開方法和天元術。元明之後,隨著籌算捷演算法的完備,珠算術產生並得到普及,明朝出現了一批有關珠算的著作。其最著者為程大位的《演算法統宗》(公元1592年),凡17卷,595問。此書適應商業發展的需要,以珠算為主要計算工具,並載有珠算開方法。此書在以後二、三百年問被多次翻刻、改編,流傳之廣是罕見的。程大位,字汝思,號渠賓,休寧(今黃山市屯溪區)人,曾在長江中下游地區經商,注意收集算經和數學問題,晚年撰成此書。
16世紀末,利瑪竇等歐洲傳教士來華,與徐光啟等一起翻譯《幾何原本》等著作。後來,傳教士們又引入了三角學、對數等西方初等數學,從此,中國數學開始了中西會通的階段。清朝260餘年,留下數學著作極多,都在不同程度上融會中西數學。
清宣城梅文鼎(公元1633—1721年)潛心於中西數學研究,著述甚多,其孫梅瑴成將他的著作編輯成《梅氏叢書輯要》60卷,其中數學著作13種40卷,內容遍及當時中國數學的各個門類,對清朝數學影響極大。
康熙皇帝愛好數學,他御定由梅瑴成、何國宗、明安圖、陳厚耀等編纂的《數理精蘊》53卷,全面系統地介紹了當時傳入的西方數學知識。上編立綱明體,為數理本源、幾何原本、算術原本等五卷;下編分條致用,為實用數學和借根方比例,以及對數、三角函數等40卷,表4種8卷,同樣對清朝數學產生了巨大影響。此書於雍正元年(公元1723年)印行。
1723年,雍正帝即位,認為傳教士不利於自己的統治,除少數供職於欽天監者外,將傳教士悉數趕到澳門。此後,西學的傳入遂告一段落,中國數學家一方面消化前此傳入的數學知識,一方面忙於整理中國古典數學著作。
1773年乾隆帝決定修《四庫全書》,戴震(公元1724—1777年)從《永樂大典》中輯出《周髀算經》、《九章算術》、《海島算經》、《孫子算經》、《五曹算經》、《五經算術》以及贗本《夏侯陽算經》等七部漢唐算經,並加校勘,《數書九章》、《測圓海鏡》、《四元玉鑒》等久佚的宋元算書也陸續輯出或發現,從此掀起了乾嘉時期(公元1736—1820年)研究整理中國古典數學的熱潮。古書注釋以李潢(?—公元1812年)《九章算術細草圖說》、羅士琳(公元1789—1853年)《四元玉鑒細草》影響較大。而開創性的研究則以焦循(公元1763—1820年)《里堂學算記》、汪萊(公元1768—1813年)《衡齋算學》、李銳(公元1768—1817年)《李氏算學遺書》最為有名。
18世紀初,法人杜德美(公元1668—1720年)傳入牛頓、格雷果里創造的三個三角函數的級數展開式。後來,三角函數和對數函數展開式的研究成為中國數學家的重要課題。明安圖(17世紀末至18世紀60年代)、董祐誠(公元1791—1823年)、項名達(公元1789—1850年)、戴煦(公元1805—1860年)等都作出了傑出貢獻。李善蘭(公元1811—1882年)的《方圓闡幽》、《弧矢啟秘》、《對數探源》(公元1845年)在三角函數與對數函數的研究上取得了更大的成就。他創造的尖錐術提出了幾個相當於定積分的公式,在接觸西方微積分思想之前獨立地接近了微積分學。李善蘭,字壬叔,號秋紉,浙江海寧人。幼年即嗜好數學,30餘歲即獲創造性成果。
1840年,列強用大炮轟開了清朝閉關自守的大門,中國逐漸淪為半封建半殖民地社會。西方數學以前所未有的規模大量傳入。1852年李善蘭到上海,與英國傳教士偉烈亞力(公元1815—1887年)合譯《幾何原本》後九卷、《代數學》13卷、《代微積拾級》18卷等許多西方數學著作,後者是中國第一部微積分學譯著。後來,華衡芳(公元1833—1902年)與英人傅蘭雅合譯了《代數術》、《微積溯源》、《三角數理》、《決疑數學》等書,後者是中國第一部概率論譯著。他們創造的許多術語至今還在使用。李善蘭還融會中西,著述頗豐。《橢圓正術解》等四種是關於圓錐曲線的研究,《級數回求》等是關於冪級數的研究,而《垛積比類》則在朱世傑基礎上系統解決了高階等差級數求和問題,並提出了著名的李善蘭恆等式。1872年撰《考數根法》,證明了費爾馬小定理,提出了素數判定法則。他的著作匯集為《則古昔齋算學》,包括14種科學著作。李善蘭是開展現代數學研究的第一位中國數學家。然而,總的說來,時處清末,經濟衰落,社會動盪,有志於現代數學的人沒有與現代工程技術結合的條件,不可能有大量可觀的成果,而士大夫階層更多的人抱有西學為我中華所固有的偏見,不求甚解。此後不久,尤其是維新變法和新文化運動之後,中國古代數學傳統基本中斷,中國數學研究納入了統一的現代數學。20世紀是中國數學復興的世紀,人們期待,在下個世紀中國將重新取得數學大國的地位。

4. 古埃及和古巴比倫人哪些古老的數學知識在我們的生活中還具有現實意義

你這句話有歧義。不知道你是那種想法所以就分開解釋

第一種,你認為古巴比倫和古埃及的數學和現在我們教的,接觸的數學不一樣。現代數學有現實意義,古代數學的意義你產生懷疑

首先,古老的數學知識和現在的數學知識是傳承的關系,是研究的先後,是樹乾和枝丫,不是枝丫與枝丫的關系。所以你如果認為那些知識和現代數學不一樣那就錯了。現在一些數學定理仍然是那個時候發現的。360度角度制就是古巴比倫人的數學成果,相信你也知道這個東西具有廣泛的應用價值和實際意義。

第二種,你認為古數學知識和和現代數學知識沒有區別,只是在想那個人們辯論了多時的「我們在學校學那麼多導數,微積分,函數去買菜又用不著」的話題。

這個問題,我認為有部分現實意義(不只是加減乘除),比如線性規劃,概率,排列組合,正態分布就在平時的生活中可以大量應用,起到事半功倍的效果(只是大多數人不知道,或者從學校學了後忘了或只是為了應試)。而幾何的知識主要在製造業方面應用。

所以,還是有廣泛的現實意義的。

上面那個,復制別人的回答很好玩嗎,你不覺得顯得你弱智十分么???明眼人都看得出來你是復制我的第一部分,好意思。

我修改了回答,所以變成下面了。提問的人,看清楚,就算給別人採納也不要給他。。。。。。。

如果不相信看這個鏈接里的圖,裡面我是先回答的,時間和次序都在他(炅炅幽靈)前面

http://..com/question/314768942.html

裡面我是8。3123點回答,他是9.1回答的

5. 關於數學的歷史知識

大約在3000年以前中國已經知道自然數的四則運算,這些運算只是一些結果,被保存在古代的文字和典籍中。

乘除的運算規則在後來的「孫子算經」(公元三世紀)內有了詳細的記載。中國古代是用籌來計數的,在我們古代人民的計數中,己利用了和我們現在相同的位率,用籌記數的方法是以縱的籌表示單位數、百位數、萬位數等;用橫的籌表示十位數、千位數等,在運算過程中也很明顯的表現出來。「孫子算經」用十六字來表明它,「一從十橫,百立千僵,千十相望,萬百相當。」

和其他古代國家一樣,乘法表的產生在中國也很早。乘法表中國古代叫九九,估計在2500年以前中國已有這個表,在那個時候人們便以九九來代表數學。現在我們還能看到漢代遺留下來的木簡(公元前一世紀)上面寫有九九的乘法口訣。

現有的史料指出,中國古代數學書「九章算術」(約公元一世紀前後)的分數運演算法則是世界上最早的文獻,「九章算術」的分數四則運算和現在我們所用的幾乎完全一樣。

古代學習算術也從量的衡量開始認識分數,「孫子算經」(公元三世紀)和「夏候陽算經」(公元六、七世紀)在論分數之前都開始講度量衡,「夏侯陽算經」卷上在敘述度量衡後又記著:「十乘加一等,百乘加二等,千乘加三等,萬乘加四等;十除退一等,百除退二等,千除退三等,萬除退四等。」這種以十的方冪來表示位率無疑地也是中國最早發現的。

小數的記法,元朝(公元十三世紀)是用低一格來表示,如13.56作1356 。

在算術中還應該提出由公元三世紀「孫子算經」的物不知數題發展到宋朝秦九韶(公元1247年)的大衍求一術,這就是中國剩餘定理,相同的方法歐洲在十九世紀才進行研究。

宋朝楊輝所著的書中(公元1274年)有一個1—300以內的因數表,例如297用「三因加一損一」來代表,就是說297=3×11×9,(11=10十1叫加一,9=10—1叫損一)。楊輝還用「連身加」這名詞來說明201—300以內的質數。

6. 關於數學知識

初中數學寶典,你知道學習數學最重要的是什麼嗎?

在初中學習數學這們課程的時候很多的學生都是比較煩惱的,因為這們課程是非常難的,並且難點非常多,很多的學生在剛開始學習的時候還可以更得上,但是過一段時間之後就會變得非常的吃力,那麼你知道初中數學寶典是什麼嗎?我們來了解一下吧!

復習知識點

以上就是初中數學寶典的內容,當學習吃力的時候可以先復習一下之前的內容,當然這個時候之前記得筆記就可以用來復習了,這樣可以更好的幫助我們學習後期的內容,並且可以改善學習吃力的問題.

7. 中國古代數學的發展歷史的論文

中國古代數學的成就與衰落

數學在中國歷史久矣。在殷墟出土的甲骨文中有一些是記錄數字的文字,包括從一至十,以及百、千、萬,最大的數字為三萬;司馬遷的史記提到大禹治水使用了規、矩、准、繩等作圖和測量工具,而且知道「勾三股四弦五」;據說《易經》還包含組合數學與二進制思想。2002年在湖南發掘的秦代古墓中,考古人員發現了距今大約2200多年的九九乘法表,與現代小學生使用的乘法口訣「小九九」十分相似。

算籌是中國古代的計算工具,它在春秋時期已經很普遍;使用算籌進行計算稱為籌算。中國古代數學的最大特點是建立在籌算基礎之上,這與西方及阿拉伯數學是明顯不同的。

但是,真正意義上的中國古代數學體系形成於自西漢至南北朝的三、四百年期間。《算數書》成書於西漢初年,是傳世的中國最早的數學專著,它是1984年由考古學家在湖北江陵張家山出土的漢代竹簡中發現的。《周髀算經》編纂於西漢末年,它雖然是一本關於「蓋天說」的天文學著作,但是包括兩項數學成就——(1)勾股定理的特例或普遍形式(「若求邪至日者,以日下為句,日高為股,句股各自乘,並而開方除之,得邪至日。」——這是中國最早關於勾股定理的書面記載);(2)測太陽高或遠的「陳子測日法」。

《九章算術》在中國古代數學發展過程中佔有非常重要的地位。它經過許多人整理而成,大約成書於東漢時期。全書共收集了246個數學問題並且提供其解法,主要內容包括分數四則和比例演算法、各種面積和體積的計算、關於勾股測量的計算等。在代數方面,《九章算術》在世界數學史上最早提出負數概念及正負數加減法法則;現在中學講授的線性方程組的解法和《九章算術》介紹的方法大體相同。注重實際應用是《九章算術》的一個顯著特點。該書的一些知識還傳播至印度和阿拉伯,甚至經過這些地區遠至歐洲。

《九章算術》標志以籌算為基礎的中國古代數學體系的正式形成。

中國古代數學在三國及兩晉時期側重於理論研究,其中以趙爽與劉徽為主要代表人物。

趙爽是三國時期吳人,在中國歷史上他是最早對數學定理和公式進行證明的數學家之一,其學術成就體現於對《周髀算經》的闡釋。在《勾股圓方圖注》中,他還用幾何方法證明了勾股定理,其實這已經體現「割補原理」的方法。用幾何方法求解二次方程也是趙爽對中國古代數學的一大貢獻。三國時期魏人劉徽則注釋了《九章算術》,其著作《九章算術注》不僅對《九章算術》的方法、公式和定理進行一般的解釋和推導,而且系統地闡述了中國傳統數學的理論體系與數學原理,並且多有創造。其發明的「割圓術」(圓內接正多邊形面積無限逼近圓面積),為圓周率的計算奠定了基礎,同時劉徽還算出圓周率的近似值——「3927/1250(3.1416)」。他設計的「牟合方蓋」的幾何模型為後人尋求球體積公式打下重要基礎。在研究多面體體積過程中,劉徽運用極限方法證明了「陽馬術」。另外,《海島算經》也是劉徽編撰的一部數學論著。

南北朝是中國古代數學的蓬勃發展時期,計有《孫子算經》、《夏侯陽算經》、《張丘建算經》等算學著作問世。

祖沖之、祖暅父子的工作在這一時期最具代表性。他們著重進行數學思維和數學推理,在前人劉徽《九章算術注》的基礎上前進了一步。根據史料記載,其著作《綴術》(已失傳)取得如下成就:①圓周率精確到小數點後第六位,得到3.1415926<π<3.1415927,並求得π的約率為22/7,密率為355/113,其中密率是分子分母在1000以內的最佳值;歐洲直到16世紀德國人鄂圖(Otto)和荷蘭人安托尼茲(Anthonisz)才得出同樣結果。②祖暅在劉徽工作的基礎上推導出球體體積公式,並提出二立體等高處截面積相等則二體體積相等(「冪勢既同則積不容異」)定理;歐洲17世紀義大利數學家卡瓦列利(Cavalieri)才提出同一定理……祖氏父子同時在天文學上也有一定貢獻。

隋唐時期的主要成就在於建立中國數學教育制度,這大概主要與國子監設立算學館及科舉制度有關。在當時的算學館《算經十書》成為專用教材對學生講授。《算經十書》收集了《周髀算經》、《九章算術》、《海島算經》等10部數學著作。所以當時的數學教育制度對繼承古代數學經典是有積極意義的。

公元600年,隋代劉焯在制訂《皇極歷》時,在世界上最早提出了等間距二次內插公式;唐代僧一行在其《大衍歷》中將其發展為不等間距二次內插公式。

從公元11世紀到14世紀的宋、元時期,是以籌算為主要內容的中國古代數學的鼎盛時期,其表現是這一時期涌現許多傑出的數學家和數學著作。中國古代數學以宋、元數學為最高境界。在世界范圍內宋、元數學也幾乎是與阿拉伯數學一道居於領先集團的。

賈憲在《黃帝九章演算法細草》中提出開任意高次冪的「增乘開方法」,同樣的方法至1819年才由英國人霍納發現;賈憲的二項式定理系數表與17世紀歐洲出現的「巴斯加三角」是類似的。遺憾的是賈憲的《黃帝九章演算法細草》書稿已佚。

秦九韶是南宋時期傑出的數學家。1247年,他在《數書九章》中將「增乘開方法」加以推廣,論述了高次方程的數值解法,並且例舉20多個取材於實踐的高次方程的解法(最高為十次方程)。16世紀義大利人菲爾洛才提出三次方程的解法。另外,秦九韶還對一次同餘式理論進行過研究。

李冶於1248年發表《測圓海鏡》,該書是首部系統論述「天元術」(一元高次方程)的著作,在數學史上具有里程碑意義。尤其難得的是,在此書的序言中,李冶公開批判輕視科學實踐活動,將數學貶為「賤技」、「玩物」等長期存在的士風謬論。

公元1261年,南宋楊輝(生卒年代不詳)在《詳解九章演算法》中用「垛積術」求出幾類高階等差級數之和。公元1274年他在《乘除通變本末》中還敘述了「九歸捷法」,介紹了籌算乘除的各種運演算法。公元1280年,元代王恂、郭守敬等制訂《授時歷》時,列出了三次差的內插公式。郭守敬還運用幾何方法求出相當於現在球面三角的兩個公式。

公元1303年,元代朱世傑(生卒年代不詳)著《四元玉鑒》,他把「天元術」推廣為「四元術」(四元高次聯立方程),並提出消元的解法,歐洲到公元1775年法國人別朱(Bezout)才提出同樣的解法。朱世傑還對各有限項級數求和問題進行了研究,在此基礎上得出了高次差的內插公式,歐洲到公元1670年英國人格里高利(Gregory)和公元1676一1678年間牛頓(Newton)才提出內插法的一般公式。

14世紀中、後葉明王朝建立以後,統治者奉行以八股文為特徵的科舉制度,在國家科舉考試中大幅度消減數學內容,於是自此中國古代數學便開始呈現全面衰退之勢。

明代珠算開始普及於中國。1592年程大位編撰的《直指演算法統宗》是一部集珠算理論之大成的著作。但是有人認為,珠算的普及是抑制建立在籌算基礎之上的中國古代數學進一步發展的主要原因之一。

由於演算天文歷法的需要,自16世紀末開始,來華的西方傳教士便將西方一些數學知識傳入中國。數學家徐光啟向義大利傳教士利馬竇學習西方數學知識,而且他們還合譯了《幾何原本》的前6卷(1607年完成)。徐光啟應用西方的邏輯推理方法論證了中國的勾股測望術,因此而撰寫了《測量異同》和《勾股義》兩篇著作。鄧玉函編譯的《大測》[2卷]、《割圓八線表》[6卷]和羅雅谷的《測量全義》[10卷]是介紹西方三角學的著作。

此外在數學方面鮮有較大成就取得,中國古代數學自此便衰落了。

http://www.hanhuncn.com/Html/Clwm/20060417212251123.html