當前位置:首頁 » 基礎知識 » 高一上冊數學的知識點
擴展閱讀
領軍教育有多少錢 2025-01-17 03:34:28
香檳塔前是什麼歌的歌詞 2025-01-17 03:24:33

高一上冊數學的知識點

發布時間: 2022-07-22 06:46:27

① 高一數學必修1知識點歸納有哪些

高一數學必修1知識點如下:

1、無限集含有無限個元素的集合。

2、有限集含有有限個元素的集合。

3、圖象變換包括圖象:平移變換、伸縮變換、對稱變換、翻折變換。

4、在多個單調區間之間不能用「或」和「」連接,只能用逗號隔開。

5、如果函數是由一些基本函數通過四則運算結合而成的.那麼,它的定義域是使各部分都有意義的x的值組成的集合。

② 高一數學集合知識點歸納有哪些

高一數學集合知識點歸納有:

1、集合是指具有某種特定性質的具體的或抽象的對象匯總而成的集體。其中,構成集合的這些對象則稱為該集合的元素。

2、一個集合中,任何兩個元素都認為是不相同的,即每個元素只能出現一次。有時需要對同一元素出現多次的情形進行刻畫,可以使用多重集,其中的元素允許出現多次。

3、一個集合中,每個元素的地位都是相同的,元素之間是無序的。集合上可以定義序關系,定義了序關系後,元素之間就可以按照序關系排序。但就集合本身的特性而言,元素之間沒有必然的序。

4、集合的確定性是指組成集合的元素的性質必須明確,不允許有模稜兩可、含混不清的情況。

5、凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件。

③ 高一數學集合知識點有哪些

高一數學集合知識點有如下:

一、某些指定的對象集在一起就成為一個集合,簡稱集,其中每一個對象叫元素。比如高一二班集合,那麼所有高一二班的同學就構成了一個集合,每一個同學就稱為這個集合的元素。

二、通常用大寫字母表示集合,用小寫字母表示元素。

三、一個集合中,每個元素的地位都是相同的,元素之間是無序的。

四、集合論的基礎是由德國數學家康托爾在19世紀70年代奠定的,經過一大批科學家半個世紀的努力,到20世紀20年代已確立了其在現代數學理論體系中的基礎地位,可以說,現代數學各個分支的幾乎所有成果都構築在嚴格的集合理論上。

五、集合中元素的數目稱為集合的基數,集合A的基數記作card(A)。當其為有限大時,集合A稱為有限集,反之則為無限集。一般的,把含有有限個元素的集合叫做有限集,含無限個元素的集合叫做無限集。

④ 中職數學高一知識點有哪些

中職數學高一知識點如下:

1、集合的三個特性:確定性,作為集合的元素,必須是能夠確定的。互異性,對於一個給定的集合,集合中的元素是互異的。無序性,集合中的元素沒有前後順序。

2、列舉法:當集合元素不多時,把集合中的元素一一列舉出來,寫在大括弧內表示集合。

3、集合論:如果兩個無限集M,N的元素之間存在一一對應,那麼它們所含元素個數是相等的。

4、提取公因式法:提取公因式分解成兩個一次因式乘積的形式,將一元二次不等式轉化成兩個一元一次不等式組求解。

5、將一個周角分成360等分,規定其中的每一等分為1度的角,這種以「度」為單位來度量角的制度叫做角度制。而弧度制就是以「弧度」為單位來度量角的制度。

⑤ 高一知識點歸納數學是什麼

高一知識點歸納數學是:

1、求函數的單調區間,必須先求函數的定義域,即遵循「函數問題定義域優先的原則」。

2、單調區間必須用區間來表示,不能用集合或不等式,單調區間一般寫成開區間,不必考慮端點問題。

3、在多個單調區間之間不能用「或」和「」連接,只能用逗號隔開。

4、判斷函數的奇偶性,首先必須考慮函數的定義域,如果函數的定義域不關於原點對稱,則函數一定是非奇非偶函數。

5、作函數的圖象,一般是首先化簡解析式,然後確定用描點法或圖象變換法作函數的圖象。

6、函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對於集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那麼就稱f:A→B為從集合A到集合B的一個函數.記作:y=f(x),x∈A.其中,x叫做自變數,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)|x∈A}叫做函數的值域。

7、映射:一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對於集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那麼就稱對應f:AB為從集合A到集合B的一個映射。記作f:A→B。

⑥ 高一數學知識點有哪些

高一數學知識點如下:

1、如果函數是由一些基本函數通過四則運算結合而成的.那麼,它的定義域是使各部分都有意義的x的值組成的集合。

2、根據「同性則增,異性則減」來判斷原函數在其定義域內的單調性。

3、函數的定義域關於原點對稱是函數具有奇偶性的必要條件。

4、半平面:平面內的一條平行線把這個平面分為2個一部分,在其中每一個一部分稱為半平面。

5、二面角求法:立即法(做出平面角)、三垂線定理及逆定理、總面積射影定理、空間向量之法向量法(留意算出的角與所需規定的角中間的等補關聯)。

⑦ 高一數學知識點總結

高一數學知識點總結(合集15篇)
總結是對過去一定時期的工作、學習或思想情況進行回顧、分析,並做出客觀評價的書面材料,它可以明確下一步的工作方向,少走彎路,少犯錯誤,提高工作效益,不如靜下心來好好寫寫總結吧。那麼如何把總結寫出新花樣呢?下面是小編整理的高一數學知識點總結,僅供參考,歡迎大家閱讀。

高一數學知識點總結1
集合的有關概念
1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素
注意:1集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。
2集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。
3集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件
2)集合的表示方法:常用的有列舉法、描述法和圖文法
3)集合的分類:有限集,無限集,空集。
4)常用數集:N,Z,Q,R,N
子集、交集、並集、補集、空集、全集等概念
1)子集:若對x∈A都有x∈B,則AB(或AB);
2)真子集:AB且存在x0∈B但x0A;記為AB(或,且)
3)交集:A∩B={x|x∈A且x∈B}
4)並集:A∪B={x|x∈A或x∈B}
5)補集:CUA={x|xA但x∈U}
注意:A,若A≠?,則?A;
若且,則A=B(等集)
集合與元素
掌握有關的術語和符號,特別要注意以下的符號:(1)與、?的區別;(2)與的區別;(3)與的區別。
子集的幾個等價關系
1A∩B=AAB;2A∪B=BAB;3ABCuACuB;
4A∩CuB=空集CuAB;5CuA∪B=IAB。
交、並集運算的性質
1A∩A=A,A∩?=?,A∩B=B∩A;2A∪A=A,A∪?=A,A∪B=B∪A;
3Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;
有限子集的個數:
設集合A的元素個數是n,則A有2n個子集,2n-1個非空子集,2n-2個非空真子集。
練習題:
已知集合M={x|x=m+,m∈Z},N={x|x=,n∈Z},P={x|x=,p∈Z},則M,N,P滿足關系()
A)M=NPB)MN=PC)MNPD)NPM
分析一:從判斷元素的共性與區別入手。
解答一:對於集合M:{x|x=,m∈Z};對於集合N:{x|x=,n∈Z}
對於集合P:{x|x=,p∈Z},由於3(n-1)+1和3p+1都表示被3除餘1的數,而6m+1表示被6除餘1的數,所以MN=P,故選B。
高一數學知識點總結2
圓的方程定義:
圓的標准方程(x―a)2+(y―b)2=r2中,有三個參數a、b、r,即圓心坐標為(a,b),只要求出a、b、r,這時圓的方程就被確定,因此確定圓方程,須三個獨立條件,其中圓心坐標是圓的定位條件,半徑是圓的定形條件。
直線和圓的位置關系:
1、直線和圓位置關系的判定方法一是方程的觀點,即把圓的方程和直線的方程聯立成方程組,利用判別式Δ來討論位置關系。
1Δ>0,直線和圓相交、2Δ=0,直線和圓相切、3Δ
方法二是幾何的觀點,即把圓心到直線的距離d和半徑R的大小加以比較。
1dR,直線和圓相離、
2、直線和圓相切,這類問題主要是求圓的切線方程、求圓的切線方程主要可分為已知斜率k或已知直線上一點兩種情況,而已知直線上一點又可分為已知圓上一點和圓外一點兩種情況。
3、直線和圓相交,這類問題主要是求弦長以及弦的中點問題。
切線的性質
(1)圓心到切線的距離等於圓的半徑;
(2)過切點的半徑垂直於切線;
(3)經過圓心,與切線垂直的直線必經過切點;
(4)經過切點,與切線垂直的直線必經過圓心;
當一條直線滿足
(1)過圓心;
(2)過切點;
(3)垂直於切線三個性質中的兩個時,第三個性質也滿足。
切線的判定定理
經過半徑的外端點並且垂直於這條半徑的直線是圓的切線。
切線長定理
從圓外一點作圓的兩條切線,兩切線長相等,圓心與這一點的連線平分兩條切線的夾角。
高一數學知識點總結3
集合的運算
運算類型交 集並 集補 集
定義域 R定義域 R
值域>0值域>0
在R上單調遞增在R上單調遞減
非奇非偶函數非奇非偶函數
函數圖象都過定點(0,1)函數圖象都過定點(0,1)
注意:利用函數的單調性,結合圖象還可以看出:
(1)在[a,b]上, 值域是 或 ;
(2)若 ,則 ; 取遍所有正數當且僅當 ;
(3)對於指數函數 ,總有 ;
二、對數函數
(一)對數
1.對數的概念:
一般地,如果 ,那麼數 叫做以 為底 的對數,記作: ( ― 底數, ― 真數, ― 對數式)
說明:○1 注意底數的限制 ,且 ;
○2 ;
○3 注意對數的書寫格式.
兩個重要對數:
○1 常用對數:以10為底的對數 ;
○2 自然對數:以無理數 為底的對數的對數 .
指數式與對數式的互化
冪值 真數
= N = b
底數
指數 對數
(二)對數的運算性質
如果 ,且 , , ,那麼:
○1 + ;
○2 - ;
○3 .
注意:換底公式: ( ,且 ; ,且 ; ).
利用換底公式推導下面的結論:(1) ;(2) .
(3)、重要的公式 1、負數與零沒有對數; 2、 , 3、對數恆等式
(二)對數函數
1、對數函數的概念:函數 ,且 叫做對數函數,其中 是自變數,函數的定義域是(0,+∞).
注意:○1 對數函數的定義與指數函數類似,都是形式定義,注意辨別。如: , 都不是對數函數,而只能稱其為對數型函數.
○2 對數函數對底數的限制: ,且 .
2、對數函數的性質:
a>10
定義域x>0定義域x>0
值域為R值域為R
在R上遞增在R上遞減
函數圖象都過定點(1,0)函數圖象都過定點(1,0)
(三)冪函數
1、冪函數定義:一般地,形如 的函數稱為冪函數,其中 為常數.
2、冪函數性質歸納.
(1)所有的冪函數在(0,+∞)都有定義並且圖象都過點(1,1);
(2) 時,冪函數的圖象通過原點,並且在區間 上是增函數.特別地,當 時,冪函數的圖象下凸;當 時,冪函數的圖象上凸;
(3) 時,冪函數的圖象在區間 上是減函數.在第一象限內,當 從右邊趨向原點時,圖象在 軸右方無限地逼近 軸正半軸,當 趨於 時,圖象在 軸上方無限地逼近 軸正半軸.
第四章 函數的應用
一、方程的根與函數的零點
1、函數零點的概念:對於函數 ,把使 成立的實數 叫做函數 的零點。
2、函數零點的意義:函數 的零點就是方程 實數根,亦即函數 的圖象與 軸交點的橫坐標。
即:方程 有實數根 函數 的圖象與 軸有交點 函數 有零點.
3、函數零點的求法:
○1 (代數法)求方程 的實數根;
○2 (幾何法)對於不能用求根公式的方程,可以將它與函數 的圖象聯系起來,並利用函數的性質找出零點.
4、二次函數的零點:
二次函數 .
(1)△>0,方程 有兩不等實根,二次函數的圖象與 軸有兩個交點,二次函數有兩個零點.
(2)△=0,方程 有兩相等實根,二次函數的圖象與 軸有一個交點,二次函數有一個二重零點或二階零點.
(3)△
5.函數的模型

⑧ 數學高一知識點有哪些

數學高一知識點有:

1、直線的傾斜角定義是x軸正向與直線向上方向之間所成的角叫直線的傾斜角.特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度.因此,傾斜角的取值范圍是0°≤α<180°。

2、直線的斜率定義是傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示,即斜率反映直線與軸的傾斜程度。

3、冪運算(指數運算)是一種關於冪的數學運算。同底數冪相乘,底數不變,指數相加;同底數冪相除,底數不變,指數相減。冪的冪,底數不變,指數相乘。

4、指數函數是數學中重要的函數。應用到值e上的這個函數寫為exp(x)。還可以等價的寫為ex,這里的e是數學常數,就是自然對數的底數。

5、指數函數的定義域為R,這里的前提是a大於0且不等於1。對於a不大於0的情況,則必然使得函數的定義域不連續,因此我們不予考慮,同時a等於0函數無意義一般也不考慮。

⑨ 高一上學期數學重點知識點有哪些

高一上學期數學重點知識點有如下:

一、圓錐曲線的方程

1、橢圓:+=1(a>b>0)或+=1(a>b>0)(其中,a2=b2+c2)。

2、雙曲線:-=1(a>0,b>0)或-=1(a>0,b>0)(其中,c2=a2+b2)。

3、拋物線:y2=±2px(p>0),x2=±2py(p>0)。

二、函數奇偶性

1、如果對於函數定義域內的任意一個x,都有f(-x)=-f(x),那麼函數f(x)就叫做奇函數。

2、如果對於函數定義域內的任意一個x,都有f(x)=f(-x),那麼函數f(x)就叫做偶函數。

三、求函數值域的方法

1、直接法:從自變數x的范圍出發,推出y=f(x)的取值范圍,適合於簡單的復合函數。

2、換元法:利用換元法將函數轉化為二次函數求值域,適合根式內外皆為一次式。

四、二次函數的零點

1、△>0,方程有兩不等實根,二次函數的圖象與軸有兩個交點,二次函數有兩個零點。

2、△=0,方程有兩相等實根(二重根),二次函數的圖象與軸有一個交點,二次函數有一個二重零點或二階零點。

3、△<0,方程無實根,二次函數的圖象與軸無交點,二次函數無零點。

五、求函數定義域的主要依據

1、分式的分母不為零。

2、偶次方根的被開方數不小於零,零取零次方沒有意義。

3、對數函數的真數必須大於零。