當前位置:首頁 » 基礎知識 » 二年級數學上冊小數乘法知識點
擴展閱讀
哪個民族的歌詞 2025-01-17 03:54:23

二年級數學上冊小數乘法知識點

發布時間: 2022-07-22 06:42:55

⑴ 小學一至六年級數學知識

小學數學知識點總結
一年級上冊
1、 數一數(1~10)
2、 比一比(多少、長短、高矮、)
3、 1~5的認識和加減法(比大小、第幾、幾和幾、加法、減法、0的認識)
4、 認識物體和圖形(長方體、正方體、圓柱、球、長方形、正方形、三角形、圓)
5、 分類
6、 6~10的認識和加減法(連加、連減、加減混合)
7、 11~20個數的認識(數位的認識)
8、 認識鍾表(整時、半時)
9、 20以內的進位加法 (湊十、9、8、7、6加幾,5、4、3、2加幾)
10、 總復習
一年級下冊
1、 位置(上下、左右、前後、位置)
2、 20以內的退位加法
3、 圖形的拼組
4、 100以內數的認識(數數、數的組成,讀數、寫數,數的順序、比較大小、整十數加一位數及相應的減法)
5、 認識人民幣(簡單的計算)
6、 100以內的加法和減法(一)(1、整十數加減整十數2、兩位數加一位數和整十數3、兩位數減一位數和整十數)
7、 認識時間
8、 找規律
9、 統計(條形統計圖)
10、 總復習
二年級上冊
1、 長度單位
2、 100以內的加法和減法(二)(1、兩位數加兩位數、不進位加、進位加2、兩位數減兩位數、不退位減、退位減3、連加、連減和加減混合、加減混合、加減估算)
3、 角的初步認識
4、 表內乘法(一)(1、乘法的初步認識2、2~6的乘法口訣)
5、 觀察物體
6、 表內乘法(二)(7、8、9的乘法口訣)
7、 統計
8、 數學廣角
9、 總復習
二年級下冊
1、 解決問題
2、 表內除法(一)(1、除法的初步認識、平均分、除法2、用2~6的乘法口訣求商)
3、 圖形與轉換(銳角和鈍角、平移和旋轉)
4、 表內除法(二)(用7、8、9的乘法口訣求商、解決問題)
5、 萬以內數的認識(1000以內數的認識、10000以內數的認識、整百整千數的加減法)
6、 克和千克
7、 萬以內的加法和減法(一)
8、 統計
9、 找規律
10、 總復習
三年級上冊
1、 測量(毫米、分米的認識,千米的認識,噸的認識)
2、 萬以內的加法和減法(二)(1、加法,2、減法3、加減法的驗算)
3、 四邊形(四邊形、平行四邊形、周長、長方形和正方形的周長、估計)
4、 有餘數的除法
5、 時、分、秒(秒的認識、時間的計算)
6、 多位數乘一位數(1、口算乘法,2、筆算乘法)
7、 分數的初步認識(1、分數的初步認識<幾分之一、幾分之幾>,2、分數的簡單計算)
8、 可能性
9、 數學廣角
10、 總復習
三年級下冊
1、 位置和方向
2、 除數是一位數的除法(1、口算除法,2、筆算乘法)
3、 統計(1、簡單的數據分析,2、平均數)
4、 年、月、日(年月日、24小時計時法)
5、 兩位數乘兩位數(1、口算乘法,2、筆算乘法)
6、 面積(面積和面積單位、長方形和正方形面積的計算、面積單位間的進率、公頃與平方千米)
7、 小數的初步認識(認識小數、簡單的小數加減法)
8、 解決問題
9、 數學廣角
10、 總復習
四年級上冊
1、 大數的認識(億以內數的認識、數的產生、億以上數的認識、計算工具的認識、用計算器計算)
2、 角的度量(直線、射線和角,角的度量、角的分類、畫角)
3、 三位數乘兩位數(1、口算乘法,2筆算乘法)
4、 平行四邊形和梯形(垂直與平行、平行四邊形與梯形)
5、 除數是兩位數的除法(1、口算除法,2、筆算除法)
6、 統計
7、 數學廣角(烙餅問題)
8、 總復習
四年級下冊
1、 四則運算
2、 位置和方向
3、 運算定律與簡便計算(1、加法運算定律,2、乘法運算定律,3、簡便計算)
4、 小數的意義和性質(1、小數的意義和讀寫法<小數的產生和意義、小數的讀法和寫法>,2、小數的性質和大小比較<小數的大小比較、小數點移動>,3、生活中的小數,4求一個小數的近似數)
5、 三角形(三角形的特性、三角形的分類、三角形的內角和、圖形的拼組)
6、 小數的加法和減法
7、 統計
8、 數學廣角
9、 總復習
五年級上冊
1、 小數乘法(小數乘整數、小數乘小數、積的近似數,連乘、乘加、乘減,整數乘法定律推廣到小數)
2、 小數除法(小數除以整數、一個數除以小數、商的近似數、循環小數、用計算器探索規律、解決問題)
3、 觀察物體
4、 簡易方程(1、用字母表示數,1、解建議方程<方程的意義、解方程、稍復雜的方程>)
5、 多邊形的面積(平行四邊形的面積、三角形的面積、梯形的面積、組合圖形的面積)
6、 統計與可能性
7、 數學廣角
8、 總復習
五年級下冊
1、 圖形的變換(軸對稱、旋轉、欣賞設計)
2、 因數與倍數(1、因數和倍數,2、2、5、3倍數的特徵,指數和和數)
3、 長方體和正方體(1、長方體和正方體的認識,2、長方體和正方體的表面積,3、長方體和正方體的體積、體積單位間的進率、容積和容積單位)
4、 分數的意義和性質(1、分數的意義<分數的產生\分數的意義\分數與除法>,2、真分數和假分數,3、分數的基本性質,4、約分<最大公因數、約分>,5、通分<最小公倍數、通分>,6、分數和小數的互化)
5、 分數的加法和減法(1、同分母分數加減法,2、異分母分數加減法,3、分數加減混合運算)
6、 統計
7、 數學廣角
8、 總復習
六年級上冊
1、 位置
2、 分數的乘法(1、分數乘法,2、解決問題,3、倒數的認識)
3、 分數的除法(1、分數的除法,2、解決問題,3、比和比的應用<比的意義、比的基本性質、比的應用>)
4、 圓(1、認識圓,2、圓的周長,3、圓的面積)
5、 百分數(1、百分數的意義和寫法,2、百分數和分數、小數的互化,3、用百分數解決問題、折扣、納稅、合理存款)
6、 統計
7、 數學廣角
8、 總復習
六年級下冊
1、 負數
2、 圓柱與圓錐(1、圓柱<圓柱的認識、圓柱的表面積、圓柱的體積>,2、圓錐<圓錐的認識、圓錐的體積>)
3、 比例(1、比例的意義和基本性質<比例的意義、比例的基本性質、解比例>,2、正比例和反比例的意義<成正比例的量、成反比例的量>3、比例的應用<比例尺、圖形的放大與縮小、用比例解決問題>)
4、 統計
5、 數學廣角
6、 整理和復習(1、數和代數、數的運算、式與方程、常見的量、比和比例,2、空間與圖形<圖形的認識和測量、圖形與變換、圖形與位置>、3、統計與可能性,4、綜合應用)
以上回答你滿意么?

⑵ 「小數乘法」的計演算法則是什麼

小數乘法法則是:

1、按整數乘法的法則算出積;

2、再看因數中一共有幾位小數,就從得數的右邊起數出幾位,點上小數點。

3、得數的小數部分末尾有0,一般要把0去掉。

除數是小數的小數除法法則:

1、先看除數中有幾位小數,就把被除數的小數點向右移動幾位,數位不夠的用零補足;

2、然後按照除數是整數的小數除法來除。

「×」是乘號,乘號前面和後面的數叫做因數,「=」是等於號,等於號後面的數叫做積。

10(因數) ×(乘號) 200(因數) =(等於號) 2000(積)因數也叫乘數。

(2)二年級數學上冊小數乘法知識點擴展閱讀:

古巴比倫數學使用60進制,考古發現的一塊古巴比倫泥板證實了這一點。這塊泥板上有一個正方形,對角線上有四個數字1, 24, 51, 10。最初發現這塊泥板時人們並不知道這是什麼意思,後來某牛人驚訝地發現,如果把這些數字當作60進制的三位小數的話,得到的正好是單位正方形對角線長度的近似值:1 + 24/60 + 51/60^2 + 10/60^3 = 1.41421296296...

這說明古巴比倫已經掌握了勾股定理。60進制的使用為古巴比倫數學的乘法運算發展帶來了很大的障礙,因為如果你要背59-59乘法口訣表的話,至少也得背1000多項,等你把它背完了後我期末論文估計都已經全寫完了。

另一項考古發現告訴了我們古巴比倫數學的乘法運算如何避免使用乘法表。考古學家們發現一些泥板上刻有60以內的平方表,利用公式ab = [(a+b)^2 - a^2 - b^2]/2 可以迅速查表得到ab的值。

另一個公式則是ab = [(a+b)^2 - (a-b)^2]/4,這說明兩個數相乘只需取它們的和平方與差平方的差,再兩次取半即可。平方數的頻繁使用很可能加速了古巴比倫人發現勾股定理的過程。

⑶ 小數乘法規則

小數乘法的運演算法則:

1、先按照整數乘法的法則求出積;

2、再看被乘數和乘數一共有幾位小數,就從積的右邊起數出幾位,點上小數點;

3、如果小數的末尾出現0時,根據小數的基本性質,把小數末尾的0劃去。

例如:6.49×7.5=48.675,其計算步驟如下圖所示:

(3)二年級數學上冊小數乘法知識點擴展閱讀:

1、小數,是實數的一種特殊的表現形式。所有分數都可以表示成小數,小數中的圓點叫做小數點,它是一個小數的整數部分和小數部分的分界號。其中整數部分是零的小數叫做純小數,整數部分不是零的小數叫做帶小數。

2、小數性質:在小數的末尾添上或去掉任意個零,小數的大小不變。例如:0.4=0.400,0.060=0.06。把小數點分別向右(或向左)移動n位,則小數的值將會擴大(或縮小)基底的n次方倍。

⑷ 小數乘法的小數點為什麼不對齊

我認為計算小數加減法時,小數點對齊的實質是相同數位對齊。因為不同數位上的數不能直接進行相加減。而計算小數乘法時,我們根據積的變化規律,把各個因數相應的擴大,使之從小數轉化為整數,先按整數乘法乘起來,最後再處理積中的小數點問題。因此,在計算小數乘法時,小數點可以不對齊。

⑸ 二年級數學中乘法算式所表示的意義

意義

3×5表示5個3相加

5x3表示3個5相加。

注意:

1、在如上乘法表示什麼中,常把乘號後面的因數做為乘號前因數的倍數。

2、參見wiki中對乘數和被乘數的定義

另:乘法的新意義:乘法不是加法的簡單記法

Ⅰ乘法原理:如果因變數f與自變數x1,x2,x3,….xn之間存在直接正比關系並且每個自變數存在質的不同,缺少任何一個自變數因變數f就失去其意義,則為乘法。

在概率論中,一個事件,出現結果需要分n個步驟,第1個步驟包括M1個不同的結果,第2個步驟包括M2個不同的結果,……,第n個步驟包括Mn個不同的結果。那麼這個事件可能出現N=M1×M2×M3×……×Mn個不同的結果。

Ⅱ加法原理:如果因變數f與自變數(z1,z2,z3…,zn)之間存在直接正比關系並且每個自變數存在相同的質,缺少任何一個自變數因變數f仍然有其意義,則為加法。

在概率論中,一個事件,出現的結果包括n類結果,第1類結果包括M1個不同的結果,第2類結果包括M2個不同的結果,……,第n類結果包括Mn個不同的結果,那麼這個事件可能出現N=M1+M2+M3+……+Mn個不同的結果。

以上所說的質是按照自變數的作用來劃分的。

此原理是邏輯乘法和邏輯加法的定量表述。

(5)二年級數學上冊小數乘法知識點擴展閱讀

乘法的運演算法則

1、整數

(1)從個位乘起,依次用第二個因數每位上的數去乘第一個因數;

(2)用第二個因數那一位上的數去乘,得數的末位就和第二個因數的那一位對齊;

(3)再把幾次乘得的數加起來;

2、小數

(1)按整數乘法的法則先求出積;

(2)看因數中一共有幾位小數,就從積的右邊起數出幾位點上小數點;

3、分數

(1)分數乘分數,用分子相乘的積作分子,分母相乘的積作分母;

(2)有整數的把整數看作分母是1的假分數;

(3)能約分的要先約分。

參考資料來源:網路-乘法

參考資料來源:網路-四則運算

⑹ 二年級乘法公式有哪些

二年級乘法公式有以下:

1×1=1

1×2=2 ,2×2=4

1×3=3 ,2×3=6 ,3×3=9

1×4=4 ,2×4=8 ,3×4=12, 4×4=16

1×5=5, 2×5=10 ,3×5=15 ,4×5=20 ,5×5=25

1×6=6 ,2×6=12,3×6=18, 4×6=24 ,5×6=30, 6×6=36 ,1×7=7 ,2×7=14 ,3×7=21, 4×7=28, 5×7=35 ,6×7=42, 7×7=49

1×8=8, 2×8=16 ,3×8=24 ,4×8=32, 5×8=40 ,6×8=48, 7×8=56, 8×8=64

1×9=9, 2×9=18, 3×9=27 ,4×9=36 ,5×9=45, 6×9=54, 7×9=63, 8×9=72, 9×9=81

二年級公式法則

因數x因數=積 ,積÷因數+因數,被除數÷除數=商 ,商x除數=被除數 ,被除數÷商=除數。

整數乘法計演算法則:先用一個因數每一位上的數分別去乘另一個因數各個數位上的數,用因數哪一位上的數去乘,乘得的數的末尾就對齊哪一位,然後把各次乘得的數加起來。

小數乘法法則:按照整數乘法的計演算法則算出積,再看因數中共有幾位小數,就從積的右邊起數出幾位,點上小數點;如果位數不夠,就用「0」補足。

⑺ 小數乘法口訣有什麼

現在小學生學的「小九九」口訣,是從「一一得一」開始,到「九九八十一」為止,而在古代,卻是倒過來,從「九九八十一」起,到「二二得四」止。因為口訣開頭兩個字是「九九」,所以,人們就把它簡稱為「小九九」。大約到13、14世紀的時候才倒過來像現在這樣「一一得一……九九八十一」。 中國使用「九九口訣」的時間較早。在《荀子》、《管子》、《淮南子》、《戰國策》等書中就能找到「三九二十七」、「六八四十八」、「四八三十二」、「六六三十六」等句子。由此可見,早在「春秋」、「戰國」的時候,《九九乘法歌訣》就已經開始流行了。 古希臘、古埃及、古印度、古羅馬沒有進位制,原則上需要無限大的乘法表,因此不可能有九九表。例如希臘乘法表必須列出7x8,70x8,700x8,700x8,7000x8……。相形之下,由於九九表基於十進位制,7x8=56,70x8=560,700x8=5600,7000x8=56000,只需7x8=56一項代表。 古埃及沒有乘法表。考古家發現,古埃及人是通累次迭加法來計算乘積的。例如計算 5x13,先將13+13得26,再迭加26+26=52,然後再加上13得65。 巴比倫算術有進位制,比希臘等幾個國家有很大的進步。不過巴比倫算術採用60進位制,原則上一個「59x59」乘法表需要59*60/2=1770項;由於「59x59」乘法表太龐大,巴比倫人從來不用類似於九九表的「乘法表」。考古學家也從來沒有發現類似於九九表的「59x59」乘法表。不過,考古學家發現巴比倫人用獨特的1x1=1,2x2=4,3x3=9……7x7=49,……9x9=81 ……16x16=256 …… 59x59=3481 的「平方表」。要計算兩個數a,b的乘積,巴比倫人則依靠他們最擅長的代數學, axb=((a+b)x(a+b)-axa-bxb)/2。例如 7x9=((7+9)x(7+9)-7x7-9x9)/2=(256-49-81)/2=126/2=63. 古瑪雅人用20進位制,跟現代世界通用的十進位制最接近。一個19x19乘法表有190項,比九九表的45項雖然大三倍多,但比巴比倫方法還是簡便得多。可是考古學家至今還沒有發現任何瑪雅乘法表。 用乘法表進行乘法運算,並非進位制的必然結果。巴比倫有進位制,但它們並沒有發明或使用九九表式的乘法表,而是發明用平方表法計算乘積。瑪雅人的數學是西半球古文明中最先進的,用20進位制,但也沒有發明乘法表。可見從進位制到乘法表是一個不少的進步。 中國春秋戰國時代不但發明了十進位制,還發明九九表。後來東傳入高麗、日本,經過絲綢之路西傳印度、波斯,繼而流行全世界。十進位制和九九表是古代中國對世界文化的一項重要的貢獻。今日世界各國較少使用希臘等國的乘法。 九九表的特點 1、九九表一般只用一到九這9個數字。 2、九九表包含乘法的可交換性,因此只需要八九七十二,不需要「九八七十二」,9乘9有81組積,九九表只需要1+2+3+4+5+6+7+8+9 =45項積。明代珠算也有採用81組積的九九表。45項的九九表稱為小九九,81項的九九表稱為大九九。 3、古代世界最短的乘法表。瑪雅乘法表須190項,巴比倫乘法表須1770項,埃及、希臘、羅馬、印度等國的乘法表須無窮多項;九九表只需45/81項。 4、朗讀時有節奏,便於記憶全表。 5、九九表存在了至少三千多年。從春秋戰國時代就用在籌算中運算,到明代則改良並用在算盤上。現在,九九表也是小學算術的基本功。 現在人們一般把那些有心計、會算計、善謀劃的人形容為心裡有「小九九」。

⑻ 小學數學知識整理

小學數學知識整理
一、小學生數學法則知識歸類
(一)筆算兩位數加法,要記三條
1、相同數位對齊;
2、從個位加起;
3、個位滿10向十位進1。
(二)筆算兩位數減法,要記三條
1、相同數位對齊;
2、從個位減起;
3、個位不夠減從十位退1,在個位加10再減。
(三)混合運算計演算法則
1、在沒有括弧的算式里,只有加減法或只有乘除法的,都要從左往右按順序運算;
2、在沒有括弧的算式里,有乘除法和加減法的,要先算乘除再算加減;
3、算式里有括弧的要先算括弧裡面的。
(四)四位數的讀法
1、從高位起按順序讀,千位上是幾讀幾千,百位上是幾讀幾百,依次類推;
2、中間有一個0或兩個0隻讀一個「零」;
3、末位不管有幾個0都不讀。
(五)四位數寫法
1、從高位起,按照順序寫;
2、幾千就在千位上寫幾,幾百就在百位上寫幾,依次類推,中間或末尾哪一位上一個也沒有,就在哪一位上寫「0」。
(六)四位數減法也要注意三條
1、相同數位對齊;
2、從個位減起;
3、哪一位數不夠減,從前位退1,在本位加10再減。
(七)一位數乘多位數乘法法則
1、從個位起,用一位數依次乘多位數中的每一位數;
2、哪一位上乘得的積滿幾十就向前進幾。
(八)除數是一位數的除法法則
1、從被除數高位除起,每次用除數先試除被除數的前一位數,如果它比除數小再試除前兩位數;
2、除數除到哪一位,就把商寫在那一位上面;
3、每求出一位商,餘下的數必須比除數小。
(九)一個因數是兩位數的乘法法則
1、先用兩位數個位上的數去乘另一個因數,得數的末位和兩位數個位對齊;
2、再用兩位數的十位上的數去乘另一個因數,得數的末位和兩位數十位對齊;
3、然後把兩次乘得的數加起來。
(十)除數是兩位數的除法法則
1、從被除數高位起,先用除數試除被除數前兩位,如果它比除數小,
2、除到被除數的哪一位就在哪一位上面寫商;
3、每求出一位商,餘下的數必須比除數小。
(十一)萬級數的讀法法則
1、先讀萬級,再讀個級;
2、萬級的數要按個級的讀法來讀,再在後面加上一個「萬」字;
3、每級末位不管有幾個0都不讀,其它數位有一個0或連續幾個零都只讀一個「零」。
(十二)多位數的讀法法則
1、從高位起,一級一級往下讀;
2、讀億級或萬級時,要按照個級數的讀法來讀,再往後面加上「億」或「萬」字;
3、每級末尾的0都不讀,其它數位有一個0或連續幾個0都只讀一個零。
(十三)小數大小的比較
比較兩個小數的大小,先看它們整數部分,整數部分大的那個數就大,整數部分相同的,十分位上的數大的那個數就大,十分位數也相同的,百分位上的數大的那個數就大,依次類推。
(十四)小數加減法計演算法則
計算小數加減法,先把小數點對齊(也就是把相同的數位上的數對齊),再按照整數加減法則進行計算,最後在得數里對齊橫線上的小數點位置,點上小數點。
(十五)小數乘法的計演算法則
計算小數乘法,先按照乘法的法則算出積,再看因數中一共幾位小數,就從積的右邊起數出幾位,點上小數點。
(十六)除數是整數除法的法則
除數是整數的小數除法,按照整數除法的法則去除,商的小數點要和被除數小數點對齊,如果除到被除數的末尾仍有餘數,就在余數後面添0再繼續除。
(十七)除數是小數的除法運演算法則
除數是小數的除法,先移動除數小數點,使它變成整數;除數的小數點向右移幾位,被除數小數點也向右移幾位(位數不夠在被除數末尾用0補足)然後按照除數是整數的小數除法進行計算。
(十八)解答應用題步驟
1、弄清題意,並找出已知條件和所求問題,分析題里的數量關系,確定先算什麼,再算什麼,最後算什麼;
2、確定每一步該怎樣算,列出算式,算出得數;
3、進行檢驗,寫出答案。
(十九)列方程解應用題的一般步驟
1、弄清題意,找出未知數,並用X表示;
2、找出應用題中數量之間的相等關系,列方程;
3、解方程;
4、檢驗、寫出答案。
(二十)同分母分數加減的法則
同分母分數相加減,分母不變,只把分子相加減。
(二十一)同分母帶分數加減的法則
帶分數相加減,先把整數部分和分數部分分別相加減,再把所得的數合並起來。
(二十二)異分母分數加減的法則
異分母分數相加減,先通分,然後按照同分母分數加減的法則進行計算。
(二十三)分數乘以整數的計演算法則
分數乘以整數,用分數的分子和整數相乘的積作分子,分母不變。
(二十四)分數乘以分數的計演算法則
分數乘以分數,用分子相乘的積作分子,分母相乘的積作分母。
(二十五)一個數除以分數的計演算法則
一個數除以分數,等於這個數乘以除數的倒數。
(二十六)把小數化成百分數和把百分數化成小數的方法
把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號;
把百分數化成小數,把百分號去掉,同時小數點向左移動兩位。
(二十七)把分數化成百分數和把百分數化成分數的方法
把分數化成百分數,通常先把分數化成小數(除不盡通常保留三位小數),再把小數化成百分數;
把百分數化成小數,先把百分數改寫成分母是100的分數,能約分的要約成最簡分數。
二、小學數學口決定義歸類
1、什麼是圖形的周長?
圍成一個圖形所有邊長的總和就是這個圖形的周長。
2、什麼是面積?
物體的表面或圍成的平面圖形的大小叫做他們的面積。
3、加法各部分的關系:
一個加數=和-另一個加數
4、減法各部分的關系:
減數=被減數-差 被減數=減數+差
5、乘法各部分之間的關系:
一個因數=積÷另一個因數
6、除法各部分之間的關系:
除數=被除數÷商 被除數=商×除數
7、角
(1)什麼是角?
從一點引出兩條射線所組成的圖形叫做角。
(2)什麼是角的頂點?
圍成角的端點叫頂點。
(3)什麼是角的邊?
圍成角的射線叫角的邊。
(4)什麼是直角?
度數為90°的角是直角。
(5)什麼是平角?
角的兩條邊成一條直線,這樣的角叫平角。
(6)什麼是銳角?
小於90°的角是銳角。
(7)什麼是鈍角?
大於90°而小於180°的角是鈍角。
(8)什麼是周角?
一條射線繞它的端點旋轉一周所成的角叫周角,一個周角等於360°.
8、(1)什麼是互相垂直?什麼是垂線?什麼是垂足?
兩條直線相交成直角時,這兩條線互相垂直,其中一條直線叫做另一條直線的垂線,這兩條直線的交點叫做垂足。
(2)什麼是點到直線的距離?
從直線外一點向一條直線引垂線,點和垂足之間的距離叫做這點到直線的距離。
9、三角形
(1)什麼是三角形?
有三條線段圍成的圖形叫三角形。
(2)什麼是三角形的邊?
圍成三角形的每條線段叫三角形的邊。
(3)什麼是三角形的頂點?
每兩條線段的交點叫三角形的頂點。
(4)什麼是銳角三角形?
三個角都是銳角的三角形叫銳角三角形。
(5)什麼是直角三角形?
有一個角是直角的三角形叫直角三角形。
(6)什麼是鈍角三角形?
有一個角是鈍角的三角形叫鈍角三角形。
(7)什麼是等腰三角形?
兩條邊相等的三角形叫等腰三角形。
(8)什麼是等腰三角形的腰?
有等腰三角形里,相等的兩個邊叫做等腰三角形的腰。
(9)什麼是等腰三角形的頂點?
兩腰的交點叫做等腰三角形的頂點。
(10)什麼是等腰三角形的底?
在等腰三角形中,與其它兩邊不相等的邊叫做等腰三角形的底。
(11)什麼是等腰三角形的底角?
底邊上兩個相等的角叫等腰三角形的底角。
(12)什麼是等邊三角形?
三條邊都相等的三角形叫等邊三角形,也叫正三角形。
(13)什麼是三角形的高?什麼叫三角形的底?
從三角形的一個頂點向它的對邊引一條垂線,頂點和垂足之間的線段叫做三角形的高,這個頂點的對邊叫三角形的底。
(14)三角形的內角和是多少度?
三角形內角和是180°.
10、四邊形
(1)什麼是四邊形?
有四條線段圍成的圖形叫四邊形。
(2)什麼是平等四邊形?
兩組對邊分別平行的四邊形叫做平行四邊形。
(3)什麼是平行四邊形的高?
從平行四邊形一條邊上的一點到對邊引一條垂線,這個點和垂足之間的線段叫做四邊形的高。
(4)什麼是梯形?
只有一組對邊平行的四邊形叫做梯形。
(5)什麼是梯形的底?
在梯形里互相平等的一組邊叫梯形的底(通常較短的底叫上底,較長的底叫下底)。
(6)什麼是梯形的腰?
在梯形里,不平等的一組對邊叫梯形的腰。
(7)什麼是梯形的高?
從上底的一點往下底引一條垂線,這個點和垂足之間的線段叫做梯形的高。
(8)什麼是等腰梯形?
兩腰相等的梯形叫做等腰梯形。
11、什麼是自然數?
用來表示物體個數的0、1、2、3、4、5、6、7、8、9、10……是自然數(自然數都是整數)。
12、什麼是四捨五入法?
求一個數的近似數時,看被省略的尾數最高位上的數是幾,如果是4或者比4小,就把尾數捨去,如果是5或者比5大,去掉尾數後,要在它的前一位加1。這種求近似數的方法,叫做四捨五入法。
13、加法意義和運算定律
(1)什麼是加法?
把兩個數合並成一個數的運算叫加法。
(2)什麼是加數?
相加的兩個數叫加數。
(3)什麼是和?
加數相加的結果叫和。
(4)什麼是加法交換律?
兩個數相加,交換加數的位置後,它的和不變,這叫做加法交換律。
14、什麼是減法?
已知兩個數的和與其中的一個加數,求另一個加數的運算叫做減法。
15、什麼是被減數?什麼是減數?什麼叫差?
在減法中已知的和叫被減數,減去的已知數叫減數,所求的未知數叫差。
16、加法各部分間的關系:
和=加數+加數 加數=和-另一加數
17、減法各部分間的關系:
差=被減數-減數 減數=被減數-差 被減數=減數+差
18、乘法
(1)什麼是乘法?
求幾個相同加數的和的簡便運算叫乘法。
(2)什麼是因數?
相乘的兩個數叫因數。
(3)什麼是積?
因數相乘所得的數叫積。
(4)什麼是乘法交換律?
兩個因數相乘,交換因數的位置,它們的積不變,這叫乘法交換律。
(5)什麼是乘法結合律?
三個數相乘,先把前兩個數相乘,再同第三個數相乘,或者先把後兩個數相乘,再同第一個數相乘,它們的積不變,這叫乘法結合律。
19、除法
(1)什麼是除法?
已知兩個因數的積與其中的一個因數,求另一個因數的運算叫除法。
(2)什麼是被除數?
在除法中,已知的積叫被除數。
(3)什麼是除數?
在除法中,已知的一個因數叫除數。
(4)什麼是商?
在除法中,求出的未知因數叫商。
20、乘法各部分的關系:
積=因數×因數 一個因數=積÷另一個因數
21、(1)除法各部分間的關系:
商=被除數÷除數 除數=被除數÷商
(2)有餘數的除法各部分間的關系:
被除數=商×除數+余數
22、什麼是名數?
通常量得的數和單位名稱合起來的數叫名數。
23、什麼是單名數?
只帶有一個單位名稱的數叫單名數。
24、什麼是復名數?
有兩個或兩個以上單位名稱的數叫復名數。
25、什麼是小數?
仿照整數的寫法,寫在整數個位的右面,用圓點隔開,用來表示十分之幾、百分之幾、千分之幾……的數叫小數。
26、什麼是小數的基本性質?
小數的末尾添上零或者去掉零,小數大小不變,這叫小數的基本性質。
27、什麼是有限小數?
小數部分的位數是有限的小數叫有限小數。
28、什麼是無限小數?
小數部分的位數是無限的小數叫無限小數。
29、什麼是循環節?
一個循環小數的部分依次不斷重復出現的數叫做這個數的循環節。
30、什麼是純循環小數?
循環節從小數第一位開始的叫純循環小數。
31、什麼是混循環小數?
循環節不是從小數部分第一位開始的叫做混循環小數。
32、什麼是四則運算?
我們把學過的加、減、乘、除四種運算統稱四則運算。
33、什麼是方程?
含有未知數的等式叫方程。
34、什麼是解方程?
求方程解的過程叫解方程。
35、什麼是倍數?什麼叫約數?
如果a能被b整除,a就是b的倍數,b就叫a的約數(或a的因數)。
36、什麼樣的數能被2整除?
個位上是0、2、4、6、8的數都能被2整除。
37、什麼是偶數?
能被2整除的數叫偶數。
38、什麼是奇數?
不能被2整除的數叫奇數。
39、什麼樣的數能被5整除?
個位上是0或5的數能被5整除。
40、什麼樣的數能被3整除?
一個數的各位上的和能被3整除,這個數就能被3整除。
41、什麼是質數(或素數)?
一個數如果只有1和它本身兩個約數,這樣的數叫質數。
42、什麼是合數?
一個數除了1和它本身還有別的約數,這樣的數叫合數。
43、什麼是質因數?
每個合數都可以寫成幾個質數相乘的形式。其中每個質數都是這個合數的因數,叫做這個合數的質因數。
44、什麼是分解質因數?
把一個合數用質因數相乘的形式表示出來叫做分解質因數。
45、什麼是公約數?什麼叫最大公約數?
幾個數公有的約數叫公約數。其中最大的一個叫最大公約數。
46、什麼是互質數?
公約數只有1的兩個數叫互質數。
47、什麼是公倍數?什麼是最小公倍數?
幾個數公有的倍數叫這幾個數的公倍數。其中最小的一個叫這幾個數的最小公倍數。
48、分數
(1)什麼是分數?
把單位1平均分成若干份,表示這樣的一份或者幾份的數叫分數。
(2)什麼是分數線?
在分數里中間的橫線叫分數線。
(3)什麼是分母?
分數線下面的部分叫分母。
(4)什麼是分子?
分數線上面的部分叫分子。
(5)什麼是分數單位?
把單位「1」平均分成若干份,表示其中的一份叫分數單位。
49、怎麼比較分數大小?
(1)分母相同的兩個分數,分子大的分數比較大。
(2)分子相同的兩個分數,分母小的分子比較大。
(3)什麼是真分數?
分子比分母小的分數叫真分數。
(4)什麼是假分數?
分子比分母大或者分子和分母相等的分數叫假分數。
(5)什麼是帶分數?
由整分數和真分數合成的數通常叫帶分數。
(6)什麼是分數的基本性質?
分數的分子和分母同時乘或除以相同的數(0除外),分數大小不變,這就是分數的基本性質。
(7)什麼是約分?
把一個分數化成同它相等,但分子、分母都比較小的數叫做約分。
(8)什麼是最簡分數?
分子、分母是互質數的分數叫最簡分數。
50、比
(1)什麼是比?
兩個數相除又叫兩個數的比。
(2)什麼是比的前項?
比號前面的數叫比的前項。
(3)什麼是比的後項?
比號後面的數叫比的後項。
(4)什麼是比值?
比的前項除以後項所得的商叫比值。
(5)什麼是比的基本性質?
比的前項和後項同時乘以或者同時除以相同的數(0除外)比值不變,這叫比的基本性質。
51、長方體和正方體
(1)什麼是棱?
兩個面相交的邊叫棱。
(2)什麼是頂點?
三條棱相交的點叫頂點。
(3)什麼是長方體的長、寬、高?
相交於一個頂點的三條棱的長度分別叫長方體的長、寬、高。
(4)什麼是正方體(立方體)?
長寬高都相等的長方體叫正方體(或立方體)。
(5)什麼是長方體的表面積?
長方體六個面的總面積叫長方體的表面積。
(6)什麼是物體體積?
物體所佔空間的大小叫做物體的體積。
52、圓
(1)什麼是圓心?
圓中心的點叫圓心。
(2)什麼是半徑?
連接圓心和圓上任意一點的線段叫半徑。
(3)什麼是直徑?
通過圓心、並且兩端都在圓上的線段叫直徑。
(4)什麼是圓的周長?
圍成圓的曲線叫圓的周長。
(5)什麼是圓周率?
我們把圓的周長和直徑的比值叫圓周率。
(6)什麼是圓的面積?
圓所圍平面的大小叫圓的面積。
(7)什麼是扇形?
一條弧和經過這條弧兩端的兩條半徑所圍成的圖形叫扇形。
(8)什麼是弧?
在圓上兩點之間的部分叫弧。
(9)什麼是圓心角?
頂點在圓心上的角叫圓心角。
(10)什麼是對稱圖形?
如果一個圖形沿著一條直線對折,兩側圖形能夠完全重合,這樣的圖形就是對稱圖形。
53、什麼是百分數?
表示一個數是另一個數百分之幾的數叫百分數,百分數也叫百分率或百分比。
54、比例
(1)什麼是比例?
表示兩個比相等的式子叫比例。
(2)什麼是比例的項?
組成比例的四個數叫比例的項。
(3)什麼是比例外項?
兩端的兩項叫比例外項。
(4)什麼是比例內項?
中間的兩項叫比例內項。
(5)什麼是比例的基本性質?
在比例中兩個外項的積等於兩個內項的積。
(6)什麼是解比例?
求比例中的未知項叫解比例。
(7)什麼是正比例關系?
兩種相關的量,一種變化,另一種量也變化,如果這兩種量中相對應的兩個數的比值(也就是商)一定,這兩種量叫正比例的量,它們的關系叫正比例關系。
(8)什麼是反比例關系?
兩種相關的量,一種變化,另一種也隨著變化,如果這兩種量中相對應的積一定,這兩種量叫反比例的量,它們的關系成反比例關系。
55、圓柱
(1)什麼是圓柱底面?
圓柱的上下兩個面叫圓柱的底面。
(2)什麼是圓柱的側面?
圓柱的曲面叫圓柱的側面。
(3)什麼是圓柱的高?
圓柱兩個底面的距離叫圓柱的高。
三、小學數學量的計算單位及進率歸類
1、長度計量單位及進率:千米(公里)、米、分米、厘米、毫米
1千米=1公里 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
2、面積計量單位及進率:平方千米、公頃、平方米、平方分米、平方厘米
1平方千米=100公頃 1平方千米=1000000平方米
1公頃=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米
3、體積容積計量單位及進率:立方米、立方分米、立方厘米、升、毫升
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方分米=1升 1立方厘米=1毫升
4、質量單位及進率:噸、千克、公斤、克
1噸=1000千克 1千克=1公斤 1千克=1000克
5、時間單位及進率:世紀、年、月、日、小時、分、秒
1世紀=100年 1年=12月 1天=24小時 1小時=60分 1分=60秒
(31天的月份有1、3、5、7、8、10、12月份,
30天的月份有4、6、9、11月份,
平年2月28天,閏年2月29天)
四、常用計算公式表
1、長方形面積=長×寬,計算公式S=ab
2、正方形面積=邊長×邊長,計算公式S=a×a=a2
3、長方形周長=(長+寬)×2,計算公式C=(a+b)×2
4、正方形周長=邊長×4,計算公式C=4a
5、平行四邊形面積=底×高,計算公式S=ah
6、三角形面積=底×高÷2,計算公式S=a×h÷2
7、梯形面積=(上底+下底)×高÷2,計算公式S=(a+b)×h÷2
8、長方體體積=長×寬×高,計算公式V=abh
9、圓的面積=圓周率×半徑平方,計算公式V=πr2
10、正方體體積=棱長×棱長×棱長,計算公式V=a3
11、長方體和正方體的體積都可以寫成底面積×高,計算公式V=sh
12、圓柱的體積=底面積×高,計算公式V=sh

⑼ 小學二年級數學上冊蘇教版 的重點內容,公式

①加數+加數=和

和-一個加數=另一個加數

②被減數-減數=差

被減數-差=減數

差+減數=被減數

③因數×因數=積

積÷一個因數=另一個因數

④被除數÷除數=商

被除數÷商=除數

商×除數=被除數

除數×商+余數=被除數.比

比的意義:兩個數相除又叫作兩個數的比。

根據比的意義可以求比值;求比值的方法:用前向除以後項。

比的基本性質:比的前項和後項都乘或除以相同的數(0除外)比值不變。應用比的基本性質可以化簡比。

.四則混合運算

①在四則運算中,加法和減法稱為第一級運算,乘法和除法稱為第二級運算。

②在沒有括弧的算式里,如果只含有同一級運算,要從左往右一次計算;如果含有兩級運算,要先做第二級運算,再做第一級運算。

③在有括弧的算式里,要先算括弧裡面的,如果既有小括弧又有中括弧,要先算小括弧裡面的,再算中括弧裡面的,最後算括弧外面的。

39.分數、百分數應用題

單位「1」已知,用乘法。單位「1」未知,用除法。

①求一個數是另一個數的幾(百)分之幾?

基本公式:前一個數÷後一個數(比較量÷標准量)

②求一個數的幾(百)分之幾或幾倍是多少?(單位「1」已知)

基本公式:單位「1」的量×分率=分率對應的量

③已知一個數的幾(百)分之幾是多少,求這個數.(單位「1」未知用除法或方程)

基本公式:分率對應的數量÷分率=單位「1」的量或者列方程解。

④已知兩個數,求一個數比另一個數多幾分之幾。

已知兩個數,求一個數比另一個數多百分之幾。

已知兩個數,求一個數比另一個數少幾分之幾。

已知兩個數,求一個數比另一個數少百分之幾。

基本公式:兩個數的差÷單位「1」的量(標准量本金:存入銀行的錢叫本金。利息:取款時銀行多支付的錢叫利息。利率:利息與本金的百分比叫做利率。

②利息計算公式:利息=本金×時間×利率

利息稅=本金×時間×利率×5%

41.四則運算定律

加法交換律:a+b=b+a,

加法結合律:(a+b)+c=a+(b+c)

乘法交換律:ab=ba,

乘法結合律:(ab)c=a(bc)

乘法分配律:(a±b)c=ac±bc

運算性質

①減法的基本性質:a-(b+c)=a-b-c

a-b-c=a-(b+c)

②除法的基本性質:a÷b÷c=a÷(b×c)

(a±b)÷c=a÷c±b÷c1、長方形的周長=(長+寬)×2C=(a+b)×2

2、正方形的周長=邊長×4C=4a

3、長方形的面積=長×寬S=ab

4、正方形的面積=邊長×邊長S=a.a=a

5、三角形的面積=底×高÷2S=ah÷2

6、平行四邊形的面積=底×高S=ah

7、梯形的面積=(上底+下底)×高÷2S=(a+b)h÷2

8、直徑=半徑×2d=2r半徑=直徑÷2r=d÷2

9、圓的周長=圓周率×直徑=圓周率×半徑×2c=πd=2πr

10、圓的面積=圓周率×半徑×半徑?=πr

11、長方體的表面積=(長×寬+長×高+寬×高)×2

12、長方體的體積=長×寬×高V=abh

13、正方體的表面積=棱長×棱長×6S=6a

14、正方體的體積=棱長×棱長×棱長V=a.a.a=a

15、圓柱的側面積=底面圓的周長×高S=ch

16、圓柱的表面積=上下底面面積+側面積

S=2πr+2πrh=2π(d÷2)+2π(d÷2)h=2π(C÷2÷π)+Ch

17、圓柱的體積=底面積×高V=Sh

V=πrh=π(d÷2)h=π(C÷2÷π)h

18、圓錐的體積=底面積×高÷3

V=Sh÷3=πrh÷3=π(d÷2)h÷3=π(C÷2÷π)h÷3

19、長方體(正方體、圓柱體)的體

1、每份數×份數=總數總數÷每份數=份數總數÷份數=每份數

2、1倍數×倍數=幾倍數幾倍數÷1倍數=倍數幾倍數÷倍數=1倍數

3、速度×時間=路程路程÷速度=時間路程÷時間=速度

4、單價×數量=總價總價÷單價=數量總價÷數量=單價

5、工作效率×工作時間=工作總量工作總量÷工作效率=工作時間工作總量÷工作時間=工作效率

6、加數+加數=和和-一個加數=另一個加數

7、被減數-減數=差被減數-差=減數差+減數=被減數

8、因數×因數=積積÷一個因數=另一個因數

9、被除數÷除數=商被除數÷商=除數商×除數=被除數

小學數學圖形計算公式

1、正方形C周長S面積a邊長周長=邊長×4C=4a面積=邊長×邊長S=a×a

2、正方體V:體積a:棱長表面積=棱長×棱長×6S表=a×a×6體積=棱長×棱長×棱長V=a×a×a

3、長方形

C周長S面積a邊長

周長=(長+寬)×2

C=2(a+b)

面積=長×寬

S=ab

4、長方體

V:體積s:面積a:長b:寬h:高

(1)表面積(長×寬+長×高+寬×高)×2

S=2(ab+ah+bh)

(2)體積=長×寬×高

V=abh

5三角形

s面積a底h高

面積=底×高÷2

s=ah÷2

三角形高=面積×2÷底

三角形底=面積×2÷高

6平行四邊形

s面積a底h高

面積=底×高s=ah

7梯形

s面積a上底b下底h高

面積=(上底+下底)×高÷2

s=(a+b)×h÷2

8圓形

S面積C周長∏d=直徑r=半徑

(1)周長=直徑×∏=2×∏×半徑

C=∏d=2∏r

(2)面積=半徑×半徑×∏

9圓柱體

v:體積h:高s;底面積r:底面半徑c:底面周長

(1)側面積=底面周長×高

(2)表面積=側面積+底面積×2

(3)體積=底面積×高

(4)體積=側面積÷2×半徑

10圓錐體

v:體積h:高s;底面積r:底面半徑

體積=底面積×高÷3

總數÷總份數=平均數

和差問題

(和+差)÷2=大數(和-差)÷2=小數

和倍問題

和÷(倍數-1)=小數

小數×倍數=大數

(或者和-小數=大數)

差倍問題

差÷(倍數-1)=小數

小數×倍數=大數

(或小數+差=大數)

植樹問題

1非封閉線路上的植樹問題主要可分為以下三種情形:

⑴如果在非封閉線路的兩端都要植樹,那麼:

株數=段數+1=全長÷株距-1

全長=株距×(株數-1)

株距=全長÷(株數-1)

⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:

株數=段數=全長÷株距

全長=株距×株數

株距=全長÷株數

⑶如果在非封閉線路的兩端都不要植樹,那麼:

株數=段數-1=全長÷株距-1

全長=株距×(株數+1)

株距=全長÷(株數+1)

2封閉線路上的植樹問題的數量關系如下

株數=段數=全長÷株距

全長=株距×株數

株距=全長÷株數

盈虧問題

(盈+虧)÷兩次分配量之差=參加分配的份數

(大盈-小盈)÷兩次分配量之差=參加分配的份數

(大虧-小虧)÷兩次分配量之差=參加分配的份數

相遇問題

相遇路程=速度和×相遇時間

相遇時間=相遇路程÷速度和

速度和=相遇路程÷相遇時間

追及問題

追及距離=速度差×追及時間

追及時間=追及距離÷速度差

速度差=追及距離÷追及時間

流水問題

順流速度=靜水速度+水流速度

逆流速度=靜水速度-水流速度

靜水速度=(順流速度+逆流速度)÷2

水流速度=(順流速度-逆流速度)÷2

濃度問題

溶質的重量+溶劑的重量=溶液的重量

溶質的重量÷溶液的重量×100%=濃度

溶液的重量×濃度=溶質的重量

溶質的重量÷濃度=溶液的重量

利潤與折扣問題

利潤=售出價-成本

利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%

漲跌金額=本金×漲跌百分比

折扣=實際售價÷原售價×100%(折扣<1)

利息=本金×利率×時間

稅後利息=本金×利率×時間×(1-20%)

時間單位換算

1世紀=100年1年=12月

大月(31天)有:135781012月

小月(30天)的有:46911月

平年2月28天,閏年2月29天

平年全年365天,閏年全年366天

1日=24小時1時=60分

1分=60秒1時=3600秒積=底面積×高V=Sh