『壹』 誰有高一數學知識點總結
高一數學知識總結必修一一、集合
一、集合有關概念
集合的含義
集合的中元素的三個特性:
元素的確定性如:世界上最高的山
元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
元素的無序性: 如:{a,b,c}和{a,c,b}是表示同一個集合
3.集合的表示:{ … } 如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
集合的表示方法:列舉法與描述法。
注意:常用數集及其記法:
非負整數集(即自然數集) 記作:N
正整數集 N*或 N+ 整數集Z 有理數集Q 實數集R
列舉法:{a,b,c……}
描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法。{xÎR| x-3>2} ,{x|
x-3>2}
語言描述法:例:{不是直角三角形的三角形}
Venn圖:
4、集合的分類:
有限集 含有有限個元素的集合
無限集 含有無限個元素的集合
空集 不含任何元素的集合例:{x|x2=-5}
二、集合間的基本關系
1.「包含」關系—子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之: 集合A不包含於集合B,或集合B不包含集合A,記作AB或BA
2.「相等」關系:A=B (5≥5,且5≤5,則5=5)
實例:設 A={x|x2-1=0} B={-1,1}
「元素相同則兩集合相等」
即:① 任何一個集合是它本身的子集。AÍA
②真子集:如果AÍB,且A¹ B那就說集合A是集合B的真子集,記作AB(或BA)
③如果 AÍB, BÍC ,那麼 AÍC
④ 如果AÍB 同時 BÍA 那麼A=B
3. 不含任何元素的集合叫做空集,記為Φ
規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
有n個元素的集合,含有2n個子集,2n-1個真子集
二、函數1、函數定義域、值域求法綜合2.、函數奇偶性與單調性問題的解題策略 3、恆成立問題的求解策略 4、反函數的幾種題型及方法5、二次函數根的問題——一題多解&指數函數y=a^xa^a*a^b=a^a+b(a>0,a、b屬於Q)(a^a)^b=a^ab(a>0,a、b屬於Q)(ab)^a=a^a*b^a(a>0,a、b屬於Q)指數函數對稱規律:1、函數y=a^x與y=a^-x關於y軸對稱2、函數y=a^x與y=-a^x關於x軸對稱3、函數y=a^x與y=-a^-x關於坐標原點對稱&對數函數y=loga^x
如果,且,,,那麼:
1·+;
2-;
3 .
注意:換底公式
(,且;,且;).
冪函數y=x^a(a屬於R)
1、冪函數定義:一般地,形如的函數稱為冪函數,其中為常數.
2、冪函數性質歸納.
(1)所有的冪函數在(0,+∞)都有定義並且圖象都過點(1,1);
(2)時,冪函數的圖象通過原點,並且在區間上是增函數.特別地,當時,冪函數的圖象下凸;當時,冪函數的圖象上凸;
(3)時,冪函數的圖象在區間上是減函數.在第一象限內,當從右邊趨向原點時,圖象在軸右方無限地逼近軸正半軸,當趨於時,圖象在軸上方無限地逼近軸正半軸.
方程的根與函數的零點
1、函數零點的概念:對於函數,把使成立的實數叫做函數的零點。
2、函數零點的意義:函數的零點就是方程實數根,亦即函數的圖象與軸交點的橫坐標。
即:方程有實數根函數的圖象與軸有交點函數有零點.
3、函數零點的求法:
1 (代數法)求方程的實數根;
2 (幾何法)對於不能用求根公式的方程,可以將它與函數的圖象聯系起來,並利用函數的性質找出零點.
4、二次函數的零點:
二次函數.
(1)△>0,方程有兩不等實根,二次函數的圖象與軸有兩個交點,二次函數有兩個零點.
(2)△=0,方程有兩相等實根,二次函數的圖象與軸有一個交點,二次函數有一個二重零點或二階零點.
(3)△<0,方程無實根,二次函數的圖象與軸無交點,二次函數無零點.三、平面向量
向量:既有大小,又有方向的量.
數量:只有大小,沒有方向的量.
有向線段的三要素:起點、方向、長度.
零向量:長度為的向量.
單位向量:長度等於個單位的向量.
相等向量:長度相等且方向相同的向量&向量的運算
加法運算
AB+BC=AC,這種計演算法則叫做向量加法的三角形法則。
已知兩個從同一點O出發的兩個向量OA、OB,以OA、OB為鄰邊作平行四邊形OACB,則以O為起點的對角線OC就是向量OA、OB的和,這種計演算法則叫做向量加法的平行四邊形法則。
對於零向量和任意向量a,有:0+a=a+0=a。
|a+b|≤|a|+|b|。
向量的加法滿足所有的加法運算定律。
減法運算
與a長度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。
(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。
數乘運算
實數λ與向量a的積是一個向量,這種運算叫做向量的數乘,記作λa,|λa|=|λ||a|,當λ > 0時,λa的方向和a的方向相同,當λ < 0時,λa的方向和a的方向相反,當λ = 0時,λa = 0。
設λ、μ是實數,那麼:(1)(λμ)a = λ(μa)(2)(λ μ)a = λa μa(3)λ(a ± b) = λa ± λb(4)(-λ)a =-(λa) = λ(-a)。
向量的加法運算、減法運算、數乘運算統稱線性運算。
向量的數量積
已知兩個非零向量a、b,那麼|a||b|cos θ叫做a與b的數量積或內積,記作a?b,θ是a與b的夾角,|a|cos θ(|b|cos θ)叫做向量a在b方向上(b在a方向上)的投影。零向量與任意向量的數量積為0。
a?b的幾何意義:數量積a?b等於a的長度|a|與b在a的方向上的投影|b|cos θ的乘積。
兩個向量的數量積等於它們對應坐標的乘積的和。四、三角函數1、善於用「1「巧解題2、三角問題的非三角化解題策略3、三角函數有界性求最值解題方法4、三角函數向量綜合題例析5、三角函數中的數學思想方法
15、正弦函數、餘弦函數和正切函數的圖象與性質:
圖象定義域值域最值當時,;當 時,.當時, ;當時,.既無最大值也無最小值周期性奇偶性奇函數偶函數奇函數單調性在上是增函數;在上是減函數.在上是增函數;在上是減函數.在上是增函數.對稱性對稱中心對稱軸對稱中心對稱軸對稱中心無對稱軸
必修四
角的頂點與原點重合,角的始邊與軸的非負半軸重合,終邊落在第幾象限,則稱為第幾象限角.
第一象限角的集合為
第二象限角的集合為
第三象限角的集合為
第四象限角的集合為
終邊在軸上的角的集合為
終邊在軸上的角的集合為
終邊在坐標軸上的角的集合為
3、與角終邊相同的角的集合為
4、已知是第幾象限角,確定所在象限的方法:先把各象限均分等份,再從軸的正半軸的上方起,依次將各區域標上一、二、三、四,則原來是第幾象限對應的標號即為終邊所落在的區域.
5、長度等於半徑長的弧所對的圓心角叫做弧度.
口訣:奇變偶不變,符號看象限.
公式一:
設α為任意角,終邊相同的角的同一三角函數的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
公式二:
設α為任意角,π α的三角函數值與α的三角函數值之間的關系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α與 -α的三角函數值之間的關系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α與α的三角函數值之間的關系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α與α的三角函數值之間的關系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α與α的三角函數值之間的關系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
其他三角函數知識:
同角三角函數基本關系
⒈同角三角函數的基本關系式
倒數關系:
tanα •cotα=1
sinα •cscα=1
cosα •secα=1
商的關系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方關系:
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
兩角和差公式
⒉兩角和與差的三角函數公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tanα+tanβ
tan(α+β)=——————
1-tanα •tanβ
tanα-tanβ
tan(α-β)=——————
1+tanα •tanβ
倍角公式
⒊二倍角的正弦、餘弦和正切公式(升冪縮角公式)
sin2α=2sinαcosα
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
2tanα
tan2α=—————
1-tan^2(α)
半形公式
⒋半形的正弦、餘弦和正切公式(降冪擴角公式)
1-cosα
sin^2(α/2)=—————
2
1+cosα
cos^2(α/2)=—————
2
1-cosα
tan^2(α/2)=—————
1+cosα
萬能公式
⒌萬能公式
2tan(α/2)
sinα=——————
1+tan^2(α/2)
1-tan^2(α/2)
cosα=——————
1+tan^2(α/2)
2tan(α/2)
tanα=——————
1-tan^2(α/2)
和差化積公式
⒎三角函數的和差化積公式
α+β α-β
sinα+sinβ=2sin—----•cos—---
2 2
α+β α-β
sinα-sinβ=2cos—----•sin—----
2 2
α+β α-β
cosα+cosβ=2cos—-----•cos—-----
2 2
α+β α-β
cosα-cosβ=-2sin—-----•sin—-----
2 2
積化和差公式
⒏三角函數的積化和差公式
sinα •cosβ=0.5[sin(α+β)+sin(α-β)]
cosα •sinβ=0.5[sin(α+β)-sin(α-β)]
cosα •cosβ=0.5[cos(α+β)+cos(α-β)]
sinα •sinβ=-
0.5[cos(α+β)-cos(α-β)]
『貳』 高一數學知識點總結
高一數學知識點總結(合集15篇)總結是對過去一定時期的工作、學習或思想情況進行回顧、分析,並做出客觀評價的書面材料,它可以明確下一步的工作方向,少走彎路,少犯錯誤,提高工作效益,不如靜下心來好好寫寫總結吧。那麼如何把總結寫出新花樣呢?下面是小編整理的高一數學知識點總結,僅供參考,歡迎大家閱讀。
高一數學知識點總結1
集合的有關概念
1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素
注意:1集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。
2集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。
3集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件
2)集合的表示方法:常用的有列舉法、描述法和圖文法
3)集合的分類:有限集,無限集,空集。
4)常用數集:N,Z,Q,R,N
子集、交集、並集、補集、空集、全集等概念
1)子集:若對x∈A都有x∈B,則AB(或AB);
2)真子集:AB且存在x0∈B但x0A;記為AB(或,且)
3)交集:A∩B={x|x∈A且x∈B}
4)並集:A∪B={x|x∈A或x∈B}
5)補集:CUA={x|xA但x∈U}
注意:A,若A≠?,則?A;
若且,則A=B(等集)
集合與元素
掌握有關的術語和符號,特別要注意以下的符號:(1)與、?的區別;(2)與的區別;(3)與的區別。
子集的幾個等價關系
1A∩B=AAB;2A∪B=BAB;3ABCuACuB;
4A∩CuB=空集CuAB;5CuA∪B=IAB。
交、並集運算的性質
1A∩A=A,A∩?=?,A∩B=B∩A;2A∪A=A,A∪?=A,A∪B=B∪A;
3Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;
有限子集的個數:
設集合A的元素個數是n,則A有2n個子集,2n-1個非空子集,2n-2個非空真子集。
練習題:
已知集合M={x|x=m+,m∈Z},N={x|x=,n∈Z},P={x|x=,p∈Z},則M,N,P滿足關系()
A)M=NPB)MN=PC)MNPD)NPM
分析一:從判斷元素的共性與區別入手。
解答一:對於集合M:{x|x=,m∈Z};對於集合N:{x|x=,n∈Z}
對於集合P:{x|x=,p∈Z},由於3(n-1)+1和3p+1都表示被3除餘1的數,而6m+1表示被6除餘1的數,所以MN=P,故選B。
高一數學知識點總結2
圓的方程定義:
圓的標准方程(x―a)2+(y―b)2=r2中,有三個參數a、b、r,即圓心坐標為(a,b),只要求出a、b、r,這時圓的方程就被確定,因此確定圓方程,須三個獨立條件,其中圓心坐標是圓的定位條件,半徑是圓的定形條件。
直線和圓的位置關系:
1、直線和圓位置關系的判定方法一是方程的觀點,即把圓的方程和直線的方程聯立成方程組,利用判別式Δ來討論位置關系。
1Δ>0,直線和圓相交、2Δ=0,直線和圓相切、3Δ
方法二是幾何的觀點,即把圓心到直線的距離d和半徑R的大小加以比較。
1dR,直線和圓相離、
2、直線和圓相切,這類問題主要是求圓的切線方程、求圓的切線方程主要可分為已知斜率k或已知直線上一點兩種情況,而已知直線上一點又可分為已知圓上一點和圓外一點兩種情況。
3、直線和圓相交,這類問題主要是求弦長以及弦的中點問題。
切線的性質
(1)圓心到切線的距離等於圓的半徑;
(2)過切點的半徑垂直於切線;
(3)經過圓心,與切線垂直的直線必經過切點;
(4)經過切點,與切線垂直的直線必經過圓心;
當一條直線滿足
(1)過圓心;
(2)過切點;
(3)垂直於切線三個性質中的兩個時,第三個性質也滿足。
切線的判定定理
經過半徑的外端點並且垂直於這條半徑的直線是圓的切線。
切線長定理
從圓外一點作圓的兩條切線,兩切線長相等,圓心與這一點的連線平分兩條切線的夾角。
高一數學知識點總結3
集合的運算
運算類型交 集並 集補 集
定義域 R定義域 R
值域>0值域>0
在R上單調遞增在R上單調遞減
非奇非偶函數非奇非偶函數
函數圖象都過定點(0,1)函數圖象都過定點(0,1)
注意:利用函數的單調性,結合圖象還可以看出:
(1)在[a,b]上, 值域是 或 ;
(2)若 ,則 ; 取遍所有正數當且僅當 ;
(3)對於指數函數 ,總有 ;
二、對數函數
(一)對數
1.對數的概念:
一般地,如果 ,那麼數 叫做以 為底 的對數,記作: ( ― 底數, ― 真數, ― 對數式)
說明:○1 注意底數的限制 ,且 ;
○2 ;
○3 注意對數的書寫格式.
兩個重要對數:
○1 常用對數:以10為底的對數 ;
○2 自然對數:以無理數 為底的對數的對數 .
指數式與對數式的互化
冪值 真數
= N = b
底數
指數 對數
(二)對數的運算性質
如果 ,且 , , ,那麼:
○1 + ;
○2 - ;
○3 .
注意:換底公式: ( ,且 ; ,且 ; ).
利用換底公式推導下面的結論:(1) ;(2) .
(3)、重要的公式 1、負數與零沒有對數; 2、 , 3、對數恆等式
(二)對數函數
1、對數函數的概念:函數 ,且 叫做對數函數,其中 是自變數,函數的定義域是(0,+∞).
注意:○1 對數函數的定義與指數函數類似,都是形式定義,注意辨別。如: , 都不是對數函數,而只能稱其為對數型函數.
○2 對數函數對底數的限制: ,且 .
2、對數函數的性質:
a>10
定義域x>0定義域x>0
值域為R值域為R
在R上遞增在R上遞減
函數圖象都過定點(1,0)函數圖象都過定點(1,0)
(三)冪函數
1、冪函數定義:一般地,形如 的函數稱為冪函數,其中 為常數.
2、冪函數性質歸納.
(1)所有的冪函數在(0,+∞)都有定義並且圖象都過點(1,1);
(2) 時,冪函數的圖象通過原點,並且在區間 上是增函數.特別地,當 時,冪函數的圖象下凸;當 時,冪函數的圖象上凸;
(3) 時,冪函數的圖象在區間 上是減函數.在第一象限內,當 從右邊趨向原點時,圖象在 軸右方無限地逼近 軸正半軸,當 趨於 時,圖象在 軸上方無限地逼近 軸正半軸.
第四章 函數的應用
一、方程的根與函數的零點
1、函數零點的概念:對於函數 ,把使 成立的實數 叫做函數 的零點。
2、函數零點的意義:函數 的零點就是方程 實數根,亦即函數 的圖象與 軸交點的橫坐標。
即:方程 有實數根 函數 的圖象與 軸有交點 函數 有零點.
3、函數零點的求法:
○1 (代數法)求方程 的實數根;
○2 (幾何法)對於不能用求根公式的方程,可以將它與函數 的圖象聯系起來,並利用函數的性質找出零點.
4、二次函數的零點:
二次函數 .
(1)△>0,方程 有兩不等實根,二次函數的圖象與 軸有兩個交點,二次函數有兩個零點.
(2)△=0,方程 有兩相等實根,二次函數的圖象與 軸有一個交點,二次函數有一個二重零點或二階零點.
(3)△
5.函數的模型
『叄』 高一數學重要知識點復習提綱
高一數學知識總結必修一一、集合 一、集合有關概念1. 集合的含義2. 集合的中元素的三個特性:(1)元素的確定性如:世界上最高的山(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}(3)元素的無序性: 如:{a,b,c}和{a,c,b}是表示同一個集合3.集合的表示:{ … } 如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}(2)集合的表示方法:列舉法與描述法。u 注意:常用數集及其記法:非負整數集(即自然數集) 記作:N正整數集 N*或 N+ 整數集Z 有理數集Q 實數集R1)列舉法:{a,b,c……}2)描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法。{x�0�2R| x-3>2} ,{x| x-3>2}3)語言描述法:例:{不是直角三角形的三角形}4)Venn圖:4、集合的分類:(1)有限集 含有有限個元素的集合(2)無限集 含有無限個元素的集合(3)空集 不含任何元素的集合例:{x|x<sup>2</sup>=-5}</p><p> </p><p>二、集合間的基本關系</p><p>1.「包含」關系—子集</p><p>注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。</p><p>反之: 集合A不包含於集合B,或集合B不包含集合A,記作A B或B A</p><p>2.「相等」關系:A=B (5≥5,且5≤5,則5=5)</p><p>實例:設 A={x|x<sup>2</sup>-1=0} B={-1,1} 「元素相同則兩集合相等」即:① 任何一個集合是它本身的子集。A�0�1A②真子集:如果A�0�1B,且A�0�1 B那就說集合A是集合B的真子集,記作A B(或B A)③如果 A�0�1B, B�0�1C ,那麼 A�0�1C④ 如果A�0�1B 同時 B�0�1A 那麼A=B3. 不含任何元素的集合叫做空集,記為Φ規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。u 有n個元素的集合,含有2n個子集,2n-1個真子集 二、函數1、函數定義域、值域求法綜合2.、函數奇偶性與單調性問題的解題策略 3、恆成立問題的求解策略 4、反函數的幾種題型及方法5、二次函數根的問題——一題多解&指數函數y=a^xa^a*a^b=a^a+b(a>0,a、b屬於Q)(a^a)^b=a^ab(a>0,a、b屬於Q)(ab)^a=a^a*b^a(a>0,a、b屬於Q)指數函數對稱規律:1、函數y=a^x與y=a^-x關於y軸對稱2、函數y=a^x與y=-a^x關於x軸對稱3、函數y=a^x與y=-a^-x關於坐標原點對稱&對數函數y=loga^x 如果 ,且 , , ,那麼:1 · + ;2 - ;3 .注意:換底公式 ( ,且 ; ,且 ; ).冪函數y=x^a(a屬於R) 1、冪函數定義:一般地,形如 的函數稱為冪函數,其中 為常數.2、冪函數性質歸納.(1)所有的冪函數在(0,+∞)都有定義並且圖象都過點(1,1);(2) 時,冪函數的圖象通過原點,並且在區間 上是增函數.特別地,當 時,冪函數的圖象下凸;當 時,冪函數的圖象上凸;(3) 時,冪函數的圖象在區間 上是減函數.在第一象限內,當 從右邊趨向原點時,圖象在 軸右方無限地逼近 軸正半軸,當 趨於 時,圖象在 軸上方無限地逼近 軸正半軸. 方程的根與函數的零點1、函數零點的概念:對於函數 ,把使 成立的實數 叫做函數 的零點。2、函數零點的意義:函數 的零點就是方程 實數根,亦即函數 的圖象與 軸交點的橫坐標。即:方程 有實數根 函數 的圖象與 軸有交點 函數 有零點.3、函數零點的求法:1 (代數法)求方程 的實數根;2 (幾何法)對於不能用求根公式的方程,可以將它與函數 的圖象聯系起來,並利用函數的性質找出零點.4、二次函數的零點:二次函數 .(1)△>0,方程 有兩不等實根,二次函數的圖象與 軸有兩個交點,二次函數有兩個零點.(2)△=0,方程 有兩相等實根,二次函數的圖象與 軸有一個交點,二次函數有一個二重零點或二階零點.(3)△<0,方程 無實根,二次函數的圖象與 軸無交點,二次函數無零點.三、平面向量 向量:既有大小,又有方向的量.數量:只有大小,沒有方向的量.有向線段的三要素:起點、方向、長度.零向量:長度為 的向量.單位向量:長度等於 個單位的向量.相等向量:長度相等且方向相同的向量&向量的運算
加法運算
AB+BC=AC,這種計演算法則叫做向量加法的三角形法則。
已知兩個從同一點O出發的兩個向量OA、OB,以OA、OB為鄰邊作平行四邊形OACB,則以O為起點的對角線OC就是向量OA、OB的和,這種計演算法則叫做向量加法的平行四邊形法則。
對於零向量和任意向量a,有:0+a=a+0=a。
|a+b|≤|a|+|b|。
向量的加法滿足所有的加法運算定律。
減法運算
與a長度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。
(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。
數乘運算
實數λ與向量a的積是一個向量,這種運算叫做向量的數乘,記作λa,|λa|=|λ||a|,當λ > 0時,λa的方向和a的方向相同,當λ < 0時,λa的方向和a的方向相反,當λ = 0時,λa = 0。
設λ、μ是實數,那麼:(1)(λμ)a = λ(μa)(2)(λ μ)a = λa μa(3)λ(a ± b) = λa ± λb(4)(-λ)a =-(λa) = λ(-a)。
向量的加法運算、減法運算、數乘運算統稱線性運算。
向量的數量積
已知兩個非零向量a、b,那麼|a||b|cos θ叫做a與b的數量積或內積,記作a?b,θ是a與b的夾角,|a|cos θ(|b|cos θ)叫做向量a在b方向上(b在a方向上)的投影。零向量與任意向量的數量積為0。
a?b的幾何意義:數量積a?b等於a的長度|a|與b在a的方向上的投影|b|cos θ的乘積。
兩個向量的數量積等於它們對應坐標的乘積的和。四、三角函數1、善於用「1「巧解題2、三角問題的非三角化解題策略3、三角函數有界性求最值解題方法4、三角函數向量綜合題例析5、三角函數中的數學思想方法 15、正弦函數、餘弦函數和正切函數的圖象與性質:函數性質 圖象定義域值域最值當 時, ;當 時, .當 時, ;當 時, .既無最大值也無最小值周期性奇偶性奇函數偶函數奇函數單調性在 上是增函數;在上是減函數.在 上是增函數;在 上是減函數.在 上是增函數.對稱性對稱中心 對稱軸 對稱中心 對稱軸 對稱中心 無對稱軸 必修四角 的頂點與原點重合,角的始邊與 軸的非負半軸重合,終邊落在第幾象限,則稱 為第幾象限角.第一象限角的集合為 第二象限角的集合為 第三象限角的集合為 第四象限角的集合為 終邊在 軸上的角的集合為 終邊在 軸上的角的集合為 終邊在坐標軸上的角的集合為 3、與角 終邊相同的角的集合為 4、已知 是第幾象限角,確定 所在象限的方法:先把各象限均分 等份,再從 軸的正半軸的上方起,依次將各區域標上一、二、三、四,則 原來是第幾象限對應的標號即為 終邊所落在的區域.5、長度等於半徑長的弧所對的圓心角叫做 弧度.口訣:奇變偶不變,符號看象限. 公式一:
設α為任意角,終邊相同的角的同一三角函數的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
公式二:
設α為任意角,π α的三角函數值與α的三角函數值之間的關系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α與 -α的三角函數值之間的關系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α與α的三角函數值之間的關系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α與α的三角函數值之間的關系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α與α的三角函數值之間的關系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
其他三角函數知識:
同角三角函數基本關系
⒈同角三角函數的基本關系式
倒數關系:
tanα �6�1cotα=1
sinα �6�1cscα=1
cosα �6�1secα=1
商的關系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方關系:
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
兩角和差公式
⒉兩角和與差的三角函數公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tanα+tanβ
tan(α+β)=——————
1-tanα �6�1tanβ
tanα-tanβ
tan(α-β)=——————
1+tanα �6�1tanβ
倍角公式
⒊二倍角的正弦、餘弦和正切公式(升冪縮角公式)
sin2α=2sinαcosα
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
2tanα
tan2α=—————
1-tan^2(α)
半形公式
⒋半形的正弦、餘弦和正切公式(降冪擴角公式)
1-cosα
sin^2(α/2)=—————
2
1+cosα
cos^2(α/2)=—————
2
1-cosα
tan^2(α/2)=—————
1+cosα
萬能公式
⒌萬能公式
2tan(α/2)
sinα=——————
1+tan^2(α/2)
1-tan^2(α/2)
cosα=——————
1+tan^2(α/2)
2tan(α/2)
tanα=——————
1-tan^2(α/2)
和差化積公式
⒎三角函數的和差化積公式
α+β α-β
sinα+sinβ=2sin—----�6�1cos—---
2 2
α+β α-β
sinα-sinβ=2cos—----�6�1sin—----
2 2
α+β α-β
cosα+cosβ=2cos—-----�6�1cos—-----
2 2
α+β α-β
cosα-cosβ=-2sin—-----�6�1sin—-----
2 2
積化和差公式
⒏三角函數的積化和差公式
sinα �6�1cosβ=0.5[sin(α+β)+sin(α-β)]
cosα �6�1sinβ=0.5[sin(α+β)-sin(α-β)]
cosα �6�1cosβ=0.5[cos(α+β)+cos(α-β)]
sinα �6�1sinβ=- 0.5[cos(α+β)-cos(α-β)]
『肆』 高中數學必修1知識點總結
馬上就要高考了,現在高中數學讓很多孩子頭疼,很多的家長還有孩子都開始著急,他們都在上一些輔導班,都在採取一對一的輔導,對於一對一的教師都是可以抓住孩子的一些弱點,然後還要了解他們的學習過程,還會幫助學生制定一些計劃,幫助他們提高學習的效率,對於高中數學,一定掌握學習的方法,才可以提高成績.高中數學都要學習什麼知識?
高中數學知識
對於高中數學的一些知識,其實還是很簡單的,只要你抓住學習的方法,從中找到樂趣,讓自己喜歡上數學,對你的學習是很有幫助的,至於一對一輔導,其實還是有用的,好的老師會給你講述好的學習方法,然後讓你考一個好成績,拿到滿意的答卷.
『伍』 高一數學必修一至四知識點總結
一
集合與簡易邏輯
集合具有四個性質
廣泛性
集合的元素什麼都可以
確定性
集合中的元素必須是確定的,比如說是好學生就不具有這種性質,因為它的概念是模糊不清的
互異性
集合中的元素必須是互不相等的,一個元素不能重復出現
無序性
集合中的元素與順序無關
二
函數
這是個重點,但是說起來也不好說,要作專題訓練,比如說二次函數,指數對數函數等等做這一類型題的時候,要掌握幾個函數思想如
構造函數
函數與方程結合
對稱思想,換元等等
三
數列
這也是個比較重要的題型,做體的時候要有整體思想,整體代換,等比等差要分開來,也要注意聯系,這樣才能做好,注意觀察數列的形式判斷是什麼數列,還要掌握求數列通向公式的幾種方法,和求和公式,求和方法,比如裂項相消,錯位相減,公式法,分組求和法等等
四
三角函數
三角函數不是考試題型,只是個應用的知識點,所以只要記熟特殊角的三角函數值和一些重要的定理就行
五
平面向量
這是個比較抽象的把幾何與代數結合起來的重難點,結體的時候要有技巧,主要就是把基本知識掌握到位,注意拓展,另外要多做題,見的題型多,結體的時候就有思路,能夠把問題簡單化,有利於提高做題效率
高一的數學只是入門,只要把基礎的掌握了,做題就沒什麼大問題了,數學就可以上130
『陸』 高一數學必修2知識點總結
高中數學必修2知識點
一、直線與方程
(1)直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°
(2)直線的斜率
①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即 。斜率反映直線與軸的傾斜程度。當 時, 。當 時, ;當 時, 不存在。
②過兩點的直線的斜率公式:
注意下面四點:(1)當 時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無關;
(3)以後求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;
(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。
(3)直線方程
①點斜式: 直線斜率k,且過點
注意:當直線的斜率為0°時,k=0,直線的方程是y=y1。當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等於x1,所以它的方程是x=x1。
②斜截式: ,直線斜率為k,直線在y軸上的截距為b
③兩點式: ( )直線兩點 ,
④截矩式: 其中直線 與 軸交於點 ,與 軸交於點 ,即 與 軸、 軸的截距分別為 。
⑤一般式: (A,B不全為0)
注意:○1各式的適用范圍
○2特殊的方程如:平行於x軸的直線: (b為常數); 平行於y軸的直線: (a為常數);
(4)直線系方程:即具有某一共同性質的直線
(一)平行直線系
平行於已知直線 ( 是不全為0的常數)的直線系: (C為常數)
(二)過定點的直線系
(ⅰ)斜率為k的直線系: ,直線過定點 ;
(ⅱ)過兩條直線 , 的交點的直線系方程為 ( 為參數),其中直線 不在直線系中。
(5)兩直線平行與垂直
當 , 時, ;
注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否。
(6)兩條直線的交點
相交
交點坐標即方程組的一組解。方程組無解 ; 方程組有無數解 與 重合
(7)兩點間距離公式:設 是平面直角坐標系中的兩個點,則
(8)點到直線距離公式:一點 到直線 的距離
(9)兩平行直線距離公式:在任一直線上任取一點,再轉化為點到直線的距離進行求解。
二、圓的方程
1、圓的定義:平面內到一定點的距離等於定長的點的集合叫圓,定點為圓心,定長為圓的半徑。
2、圓的方程
(1)標准方程 ,圓心 ,半徑為r;
(2)一般方程
當 時,方程表示圓,此時圓心為, 半徑為
當 時,表示一個點; 當 時,方程不表示任何圖形。
(3)求圓方程的方法:
一般都採用待定系數法:先設後求。確定一個圓需要三個獨立條件,
若利用圓的標准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圓的幾何性質:如弦的中垂線必經過原點,以此來確定圓心的位置。
3、直線與圓的位置關系:
直線與圓的位置關系有相離,相切,相交三種情況,基本上由下列兩種方法判斷:
(1)設直線 ,圓 圓心 到l的距離為 則有
(2)設直線 ,圓 ,先將方程聯立消元,得到一個一元二次方程之後,令其中的判別式為 ,則有 ; ;
註:如圓心的位置在原點,可使用公式 去解直線與圓相切的問題,其中 表示切點坐標,r表示半徑。
(3)過圓上一點的切線方程:
①圓x2+y2=r2,圓上一點為(x0,y0),則過此點的切線方程為 (課本命題).
②圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)= r2 (課本命題的推廣).
4、圓與圓的位置關系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。
設圓 ,
兩圓的位置關系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。
當 時兩圓外離,此時有公切線四條;
當 時兩圓外切,連心線過切點,有外公切線兩條,內公切線一條;
當 時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;
當 時,兩圓內切,連心線經過切點,只有一條公切線;
當 時,兩圓內含; 當 時,為同心圓。
三、立體幾何初步
1、柱、錐、台、球的結構特徵
(1) 稜柱:
定義:有兩個面互相平行,其餘各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數作為分類的標准分為三稜柱、四稜柱、五稜柱等。
表示:用各頂點字母,如五稜柱 或用對角線的端點字母,如五稜柱
幾何特徵:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行於底面的截面是與底面全等的多邊形。
(2)棱錐
定義:有一個面是多邊形,其餘各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體
分類:以底面多邊形的邊數作為分類的標准分為三棱錐、四棱錐、五棱錐等
表示:用各頂點字母,如五棱錐
幾何特徵:側面、對角面都是三角形;平行於底面的截面與底面相似,其相似比等於頂點到截面距離與高的比的平方。
(3)稜台:
定義:用一個平行於棱錐底面的平面去截棱錐,截面和底面之間的部分
分類:以底面多邊形的邊數作為分類的標准分為三棱態、四稜台、五稜台等
表示:用各頂點字母,如五稜台
幾何特徵:①上下底面是相似的平行多邊形 ②側面是梯形 ③側棱交於原棱錐的頂點
(4)圓柱:
定義:以矩形的一邊所在的直線為軸旋轉,其餘三邊旋轉所成的曲面所圍成的幾何體
幾何特徵:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。
(5)圓錐:
定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體
幾何特徵:①底面是一個圓;②母線交於圓錐的頂點;③側面展開圖是一個扇形。
(6)圓台:
定義:用一個平行於圓錐底面的平面去截圓錐,截面和底面之間的部分
幾何特徵:①上下底面是兩個圓;②側面母線交於原圓錐的頂點;③側面展開圖是一個弓形。
(7)球體:
定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體
幾何特徵:①球的截面是圓;②球面上任意一點到球心的距離等於半徑。
2、空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向後面正投影);側視圖(從左向右)、俯視圖(從上向下)
註:正視圖反映了物體上下、左右的位置關系,即反映了物體的高度和長度;
俯視圖反映了物體左右、前後的位置關系,即反映了物體的長度和寬度;
側視圖反映了物體上下、前後的位置關系,即反映了物體的高度和寬度。
3、空間幾何體的直觀圖——斜二測畫法
斜二測畫法特點:①原來與x軸平行的線段仍然與x平行且長度不變;
②原來與y軸平行的線段仍然與y平行,長度為原來的一半。
4、柱體、錐體、台體的表面積與體積
(1)幾何體的表面積為幾何體各個面的面積的和。
(2)特殊幾何體表面積公式(c為底面周長,h為高, 為斜高,l為母線)
(3)柱體、錐體、台體的體積公式
(4)球體的表面積和體積公式:V = ; S =
5、空間點、直線、平面的位置關系
(1)平面
① 平面的概念: A.描述性說明; B.平面是無限伸展的;
② 平面的表示:通常用希臘字母α、β、γ表示,如平面α(通常寫在一個銳角內);也可以用兩個相對頂點的字母來表示,如平面BC。
③ 點與平面的關系:點A在平面 內,記作 ;點 不在平面 內,記作
點與直線的關系:點A的直線l上,記作:A∈l; 點A在直線l外,記作A l;
直線與平面的關系:直線l在平面α內,記作l α;直線l不在平面α內,記作l α。
(2)公理1:如果一條直線的兩點在一個平面內,那麼這條直線是所有的點都在這個平面內。(即直線在平面內,或者平面經過直線)
應用:檢驗桌面是否平; 判斷直線是否在平面內 。 用符號語言表示公理1:
(3)公理2:經過不在同一條直線上的三點,有且只有一個平面。
推論:一直線和直線外一點確定一平面;兩相交直線確定一平面;兩平行直線確定一平面。
公理2及其推論作用:①它是空間內確定平面的依據 ②它是證明平面重合的依據
(4)公理3:如果兩個不重合的平面有一個公共點,那麼它們有且只有一條過該點的公共直線
符號:平面α和β相交,交線是a,記作α∩β=a。 符號語言:
公理3的作用:①它是判定兩個平面相交的方法。
②它說明兩個平面的交線與兩個平面公共點之間的關系:交線必過公共點。
③它可以判斷點在直線上,即證若干個點共線的重要依據。
(5)公理4:平行於同一條直線的兩條直線互相平行
(6)空間直線與直線之間的位置關系
① 異面直線定義:不同在任何一個平面內的兩條直線
② 異面直線性質:既不平行,又不相交。
③ 異面直線判定:過平面外一點與平面內一點的直線與平面內不過該店的直線是異面直線
④ 異面直線所成角:直線a、b是異面直線,經過空間任意一點O,分別引直線a』∥a,b』∥b,則把直線a』和b』所成的銳角(或直角)叫做異面直線a和b所成的角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直。
說明:(1)判定空間直線是異面直線方法:①根據異面直線的定義;②異面直線的判定定理
(2)在異面直線所成角定義中,空間一點O是任取的,而和點O的位置無關。
(3)求異面直線所成角步驟:
A、利用定義構造角,可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點選在特殊的位置上。
B、證明作出的角即為所求角
C、利用三角形來求角
(7)等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,那麼這兩角相等或互補。
(8)空間直線與平面之間的位置關系
直線在平面內——有無數個公共點.
三種位置關系的符號表示:a α a∩α=A a∥α
(9)平面與平面之間的位置關系:平行——沒有公共點;α∥β 相交——有一條公共直線。α∩β=b
6、空間中的平行問題
(1)直線與平面平行的判定及其性質
線面平行的判定定理:平面外一條直線與此平面內一條直線平行,則該直線與此平面平行。 線線平行 線面平行
線面平行的性質定理:如果一條直線和一個平面平行,經過這條直線的平面和這個平面相交,那麼這條直線和交線平行。
線面平行 線線平行
(2)平面與平面平行的判定及其性質
兩個平面平行的判定定理(1)如果一個平面內的兩條相交直線都平行於另一個平面,那麼這兩個平面平行(線面平行→面面平行),
(2)如果在兩個平面內,各有兩組相交直線對應平行,那麼這兩個平面平行。(線線平行→面面平行),
(3)垂直於同一條直線的兩個平面平行,
兩個平面平行的性質定理(1)如果兩個平面平行,那麼某一個平面內的直線與另一個平面平行。(面面平行→線面平行)
(2)如果兩個平行平面都和第三個平面相交,那麼它們的交線平行。(面面平行→線線平行)
7、空間中的垂直問題
(1)線線、面面、線面垂直的定義
①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直。
②線面垂直:如果一條直線和一個平面內的任何一條直線垂直,就說這條直線和這個平面垂直。
③平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直。
(2)垂直關系的判定和性質定理
①線面垂直判定定理和性質定理
判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那麼這條直線垂直這個平面。
性質定理:如果兩條直線同垂直於一個平面,那麼這兩條直線平行。
②面面垂直的判定定理和性質定理
判定定理:如果一個平面經過另一個平面的一條垂線,那麼這兩個平面互相垂直。
性質定理:如果兩個平面互相垂直,那麼在一個平面內垂直於他們的交線的直線垂直於另一個平面。
8、空間角問題
(1)直線與直線所成的角
①兩平行直線所成的角:規定為 。
②兩條相交直線所成的角:兩條直線相交其中不大於直角的角,叫這兩條直線所成的角。
③兩條異面直線所成的角:過空間任意一點O,分別作與兩條異面直線a,b平行的直線 ,形成兩條相交直線,這兩條相交直線所成的不大於直角的角叫做兩條異面直線所成的角。
(2)直線和平面所成的角
①平面的平行線與平面所成的角:規定為 。
②平面的垂線與平面所成的角:規定為 。
③平面的斜線與平面所成的角:平面的一條斜線和它在平面內的射影所成的銳角,叫做這條直線和這個平面所成的角。
求斜線與平面所成角的思路類似於求異面直線所成角:「一作,二證,三計算」。
在「作角」時依定義關鍵作射影,由射影定義知關鍵在於斜線上一點到面的垂線,
解題時,注意挖掘題設中兩個信息:(1)斜線上一點到面的垂線;(2)過斜線上的一點或過斜線的平面與已知面垂直,由面面垂直性質易得垂線。
(3)二面角和二面角的平面角
①二面角的定義:從一條直線出發的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面。
②二面角的平面角:以二面角的棱上任意一點為頂點,在兩個面內分別作垂直於棱的兩條射線,這兩條射線所成的角叫二面角的平面角。
③直二面角:平面角是直角的二面角叫直二面角。兩相交平面如果所組成的二面角是直二面角,那麼這兩個平面垂直;反過來,如果兩個平面垂直,那麼所成的二面角為直二面角
④求二面角的方法
定義法:在棱上選擇有關點,過這個點分別在兩個面內作垂直於棱的射線得到平面角
垂面法:已知二面角內一點到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角
9、空間直角坐標系
(1)定義:如圖, 是單位正方體.以A為原點,分別以OD,O ,OB的方向為正方向,
建立三條數軸 。這時建立了一個空間直角坐標系Oxyz.
1)O叫做坐標原點 2)x 軸,y軸,z軸叫做坐標軸. 3)過每兩個坐標軸的平面叫做坐標面。
(2)右手錶示法: 令右手大拇指、食指和中指相互垂直時,可能形成的位置。大拇指指向為x軸正方向,食指指向為y軸正向,中指指向則為z軸正向,這樣也可以決定三軸間的相位置。
(3)任意點坐標表示:空間一點M的坐標可以用有序實數組 來表示,有序實數組 叫做點M在此空間直角坐標系中的坐標,記作 (x叫做點M的橫坐標,y叫做點M的縱坐標,z叫做點M的豎坐標)
(4)空間兩點距離坐標公式:
『柒』 高中數學知識點總結
《高中數學基礎知識梳理(數學小飛俠)》網路網盤免費下載
鏈接:
資源目錄
01.集合例題講解.mp4
01.集合進階.mp4
02函數的值域.mp4
03函數的定義域與解析式.mp4
04函數的單調性.mp4
04函數的奇偶性.mp4
05指數運算與指數函數.mp4
07對數運算與對數函數.mp4
08冪函數突破.mp4
09函數零點專題.mp4
10含參二次函數與不等式專題.mp4
11二次函數根的分布專題.mp4
12空間幾何體.mp4
13點線面位置關系進階.mp4
14平行關系突破.mp4
15垂直關系突破.mp4
16空間幾何關系綜合.mp4
17直線方程突破.mp4
18圓的方程突破.mp4
19演算法初步.mp4
20演算法語句與演算法案例.mp4
21數據的收集與頻率分布.mp4
22常用統計量與相關關系.mp4
23古典概型概率.mp4
24幾何概型概率.mp4
25任意角重難點.mp4
26三角函數定義與誘導公式.mp4
27三角函數圖像及性質.mp4
28平面向量幾何運算.mp4
29平面向量代數運算.mp4
30.三角恆等變換.mp4
31.三角函數計算專題.mp4
32.正弦定理與餘弦定理.mp4
33.等差數列突破.mp4
34.等比數列突破.mp4
35.數列通項公式專題 .mp4
36.數列求和公式專題 .mp4
37.二次不等式與分式不等式.mp4
38.線性規劃問題.mp4
39.基本不等式突破.mp4
40.邏輯用語專題.mp4
41.橢圓方程及其幾何性質.mp4
42.雙曲線方程及其性質.mp4
43.拋物線方程及其性質.mp4
44.直線與圓錐曲線綜合.mp4
45.空間向量突破.mp4
46.導數的計算專題.mp4
47.導數的應用.mp4
48.導數的應用(二).mp4
49.定積分與微積分.mp4
50.復數專題.mp4
51.排列組合.mp4
52.二項式定理.mp4
53.隨機變數及其變數.mp4
54回歸分析與獨立性檢驗.mp4
資源目錄
01.集合例題講解.mp4
01.集合進階.mp4
02函數的值域.mp4
03函數的定義域與解析式.mp4
04函數的單調性.mp4
04函數的奇偶性.mp4
05指數運算與指數函數.mp4
07對數運算與對數函數.mp4
08冪函數突破.mp4
09函數零點專題.mp4
10含參二次函數與不等式專題.mp4
11二次函數根的分布專題.mp4
12空間幾何體.mp4
13點線面位置關系進階.mp4
14平行關系突破.mp4
15垂直關系突破.mp4
16空間幾何關系綜合.mp4
17直線方程突破.mp4
18圓的方程突破.mp4
19演算法初步.mp4
20演算法語句與演算法案例.mp4
21數據的收集與頻率分布.mp4
22常用統計量與相關關系.mp4
23古典概型概率.mp4
24幾何概型概率.mp4
25任意角重難點.mp4
26三角函數定義與誘導公式.mp4
27三角函數圖像及性質.mp4
28平面向量幾何運算.mp4
29平面向量代數運算.mp4
30.三角恆等變換.mp4
31.三角函數計算專題.mp4
32.正弦定理與餘弦定理.mp4
33.等差數列突破.mp4
34.等比數列突破.mp4
35.數列通項公式專題 .mp4
36.數列求和公式專題 .mp4
37.二次不等式與分式不等式.mp4
38.線性規劃問題.mp4
39.基本不等式突破.mp4
40.邏輯用語專題.mp4
41.橢圓方程及其幾何性質.mp4
42.雙曲線方程及其性質.mp4
43.拋物線方程及其性質.mp4
44.直線與圓錐曲線綜合.mp4
45.空間向量突破.mp4
46.導數的計算專題.mp4
47.導數的應用.mp4
48.導數的應用(二).mp4
49.定積分與微積分.mp4
50.復數專題.mp4
51.排列組合.mp4
52.二項式定理.mp4
53.隨機變數及其變數.mp4
54回歸分析與獨立性檢驗.mp4