當前位置:首頁 » 基礎知識 » 北師大版初中數學相似圖形知識點
擴展閱讀

北師大版初中數學相似圖形知識點

發布時間: 2022-07-21 20:22:35

❶ 北師大版初中數學知識點總結

我只能給你總結一些知識點,見諒見諒
初中的數學主要是分代數和幾何兩大部分,兩者在中考中所佔的比例,代數略大於幾何(我不知道你是哪裡的人,反正在我們江蘇省泰州市的中考中是這樣的)。
代數主要有以下幾點:1,有理數的運算,主要講有理數的三級運算(加減乘除和乘方開方)在這里要注意數字和字母的符號意識,就是,不要受小學數字的影響,一看見字母就不會做題了。2,整式的三級運算,注意符號意識的培養,還有就是因式分解,這和整式的乘法是互換的,注意像平方差公式和完全平方公式的正用、逆用和變形用。3,方程,會一元一次、二元一次、三元一次、一元二次四種方程的解法和應用,記住,方程是一種方法,是一種解題的手段。4,函數,會識別一次函數、二次函數、反比例函數的圖像,記住他們的特徵,要會根據條件來應用。尤其要注意二次函數,這是中考的重點和難點。應用題里會拿它來出一道難題的
幾何主要有以下幾點:1,識別各種平面圖形和立體圖形,這你應該非常熟悉。2,圖形的平移、旋轉和軸對稱,這個考察你的空間想像的能力,多做一些題。3,三角形的全等和相似,要會證明,注意要有完整的過程和嚴密的步驟,背過證明三角形全等的五種方法和證明相似的四種方法;還有像等腰三角形、直角三角形和黃金三角形的性質,要會應用,這在證明題中會有很大的幫助。4,四邊形,把握好平行四邊形、長方形、正方形、菱形和梯形的概念,選擇體里會拿著它們之間的微小差異而大做文章,注意它們的判定和性質,證明題里也會考到。5,圓,我這里沒有細學,因為這里不是我們中考的重點,但是圓的難度會很大,它的知識點很多、很碎,圓的難題就是由許許多多細小的點構成的。
以上就是我對初中數學知識的總結,不過,這畢竟是我的東西,我是個高中生,初中的課本我也有一段時間沒碰過了,有遺漏之處,就要靠你的努力了(不好意思,題目我也沒有)
易錯題型你可以看看"天驕之路"叢書或上網搜索,最好是向老師要一點資料. 回答:2007-05-01 21:28 提問者對答案的評價:

❷ 八年級下北師大版數學知識點

正好我今年教八年級數學。沒有時間自己整理,從網上下載的,我看不錯,你借鑒一下。
北師大版初中數學定理知識點匯總
八年級(下冊)
第一章 一元一次不等式和一元一次不等式組
一. 不等關系
※1. 一般地,用符號「<」(或「≤」), 「>」(或「≥」)連接的式子叫做不等式.
¤2. 要區別方程與不等式: 方程表示的是相等的關系;不等式表示的是不相等的關系.
※3. 准確「翻譯」不等式,正確理解「非負數」、「不小於」等數學術語.
非負數 <===> 大於等於0(≥0) <===> 0和正數 <===> 不小於0
非正數 <===> 小於等於0(≤0) <===> 0和負數 <===> 不大於0
二. 不等式的基本性質
※1. 掌握不等式的基本性質,並會靈活運用:
(1) 不等式的兩邊加上(或減去)同一個整式,不等號的方向不變,即:
如果a>b,那麼a+c>b+c, a-c>b-c.
(2) 不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變,即
如果a>b,並且c>0,那麼ac>bc, .
(3) 不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變,即:
如果a>b,並且c<0,那麼ac<bc,
※2. 比較大小:(a、b分別表示兩個實數或整式)
一般地:
如果a>b,那麼a-b是正數;反過來,如果a-b是正數,那麼a>b;
如果a=b,那麼a-b等於0;反過來,如果a-b等於0,那麼a=b;
如果a<b,那麼a-b是負數;反過來,如果a-b是正數,那麼a<b;
即:
a>b <===> a-b>0
a=b <===> a-b=0
a<b <===> a-b<0
(由此可見,要比較兩個實數的大小,只要考察它們的差就可以了.
三. 不等式的解集:
※1. 能使不等式成立的未知數的值,叫做不等式的解;一個不等式的所有解,組成這個不等式的解集;求不等式的解集的過程,叫做解不等式.
※2. 不等式的解可以有無數多個,一般是在某個范圍內的所有數,與方程的解不同.
¤3. 不等式的解集在數軸上的表示:
用數軸表示不等式的解集時,要確定邊界和方向:
①邊界:有等號的是實心圓圈,無等號的是空心圓圈;
②方向:大向右,小向左
四. 一元一次不等式:
※1. 只含有一個未知數,且含未知數的式子是整式,未知數的次數是1. 像這樣的不等式叫做一元一次不等式.
※2. 解一元一次不等式的過程與解一元一次方程類似,特別要注意,當不等式兩邊都乘以一個負數時,不等號要改變方向.
※3. 解一元一次不等式的步驟:
①去分母;
②去括弧;
③移項;
④合並同類項;
⑤系數化為1(不等號的改變問題)
※4. 一元一次不等式基本情形為ax>b(或ax<b)
①當a>0時,解為 ;
②當a=0時,且b<0,則x取一切實數;
當a=0時,且b≥0,則無解;
③當a<0時, 解為 ;
¤5. 不等式應用的探索(利用不等式解決實際問題)
列不等式解應用題基本步驟與列方程解應用題相類似,即:
①審: 認真審題,找出題中的不等關系,要抓住題中的關鍵字眼,如「大於」、「小於」、「不大於」、「不小於」等含義;
②設: 設出適當的未知數;
③列: 根據題中的不等關系,列出不等式;
④解: 解出所列的不等式的解集;
⑤答: 寫出答案,並檢驗答案是否符合題意.
五. 一元一次不等式與一次函數
六. 一元一次不等式組
※1. 定義: 由含有一個相同未知數的幾個一元一次不等式組成的不等式組,叫做一元一次不等式組.
※2. 一元一次不等式組中各個不等式解集的公共部分叫做不等式組的解集.如果這些不等式的解集無公共部分,就說這個不等式組無解.
幾個不等式解集的公共部分,通常是利用數軸來確定.
※3. 解一元一次不等式組的步驟:
(1)分別求出不等式組中各個不等式的解集;
(2)利用數軸求出這些解集的公共部分,即這個不等式組的解集.
兩個一元一次不等式組的解集的四種情況(a、b為實數,且a<b)
一元一次不等式 解集 圖示 敘述語言表達

x>b 兩大取較大

x>a 兩小取小

a<x<b 大小交叉中間找

無解 在大小分離沒有解
(是空集)

第二章 分解因式
一. 分解因式
※1. 把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式.
※2. 因式分解與整式乘法是互逆關系.
因式分解與整式乘法的區別和聯系:
(1)整式乘法是把幾個整式相乘,化為一個多項式;
(2)因式分解是把一個多項式化為幾個因式相乘.
二. 提公共因式法
※1. 如果一個多項式的各項含有公因式,那麼就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式.這種分解因式的方法叫做提公因式法.
如:
※2. 概念內涵:
(1)因式分解的最後結果應當是「積」;
(2)公因式可能是單項式,也可能是多項式;
(3)提公因式法的理論依據是乘法對加法的分配律,即:
※3. 易錯點點評:
(1)注意項的符號與冪指數是否搞錯;
(2)公因式是否提「干凈」;
(3)多項式中某一項恰為公因式,提出後,括弧中這一項為+1,不漏掉.
三. 運用公式法
※1. 如果把乘法公式反過來,就可以用來把某些多項式分解因式.這種分解因式的方法叫做運用公式法.
※2. 主要公式:
(1)平方差公式:
(2)完全平方公式:

¤3. 易錯點點評:
因式分解要分解到底.如 就沒有分解到底.
※4. 運用公式法:
(1)平方差公式:
①應是二項式或視作二項式的多項式;
②二項式的每項(不含符號)都是一個單項式(或多項式)的平方;
③二項是異號.
(2)完全平方公式:
①應是三項式;
②其中兩項同號,且各為一整式的平方;
③還有一項可正負,且它是前兩項冪的底數乘積的2倍.
※5. 因式分解的思路與解題步驟:
(1)先看各項有沒有公因式,若有,則先提取公因式;
(2)再看能否使用公式法;
(3)用分組分解法,即通過分組後提取各組公因式或運用公式法來達到分解的目的;
(4)因式分解的最後結果必須是幾個整式的乘積,否則不是因式分解;
(5)因式分解的結果必須進行到每個因式在有理數范圍內不能再分解為止.
四. 分組分解法:
※1. 分組分解法:利用分組來分解因式的方法叫做分組分解法.
如:
※2. 概念內涵:
分組分解法的關鍵是如何分組,要嘗試通過分組後是否有公因式可提,並且可繼續分解,分組後是否可利用公式法繼續分解因式.
※3. 注意: 分組時要注意符號的變化.
五. 十字相乘法:
※1.對於二次三項式 ,將a和c分別分解成兩個因數的乘積, , , 且滿足 ,往往寫成 的形式,將二次三項式進行分解.
如:
※2. 二次三項式 的分解:

※3. 規律內涵:
(1)理解:把 分解因式時,如果常數項q是正數,那麼把它分解成兩個同號因數,它們的符號與一次項系數p的符號相同.
(2)如果常數項q是負數,那麼把它分解成兩個異號因數,其中絕對值較大的因數與一次項系數p的符號相同,對於分解的兩個因數,還要看它們的和是不是等於一次項系數p.
※4. 易錯點點評:
(1)十字相乘法在對系數分解時易出錯;
(2)分解的結果與原式不等,這時通常採用多項式乘法還原後檢驗分解的是否正確.

第三章 分式
一. 分式
※1. 兩個整數不能整除時,出現了分數;類似地,當兩個整式不能整除時,就出現了分式.
整式A除以整式B,可以表示成 的形式.如果除式B中含有字母,那麼稱 為分式,對於任意一個分式,分母都不能為零.
※2. 整式和分式統稱為有理式,即有:
※3. 進行分數的化簡與運算時,常要進行約分和通分,其主要依據是分數的基本性質:
分式的分子與分母都乘以(或除以)同一個不等於零的整式,分式的值不變.

※4. 一個分式的分子、分母有公因式時,可以運用分式的基本性質,把這個分式的分子、分母同時除以它的們的公因式,也就是把分子、分母的公因式約去,這叫做約分.
二. 分式的乘除法
※1. 分式乘以分式,用分子的積做積的分子,分母的積做積的分母;分式除以以分式,把除式的分子、分母顛倒位置後,與被除式相乘.
即: ,
※2. 分式乘方,把分子、分母分別乘方.
即:
逆向運用 ,當n為整數時,仍然有 成立.
※3. 分子與分母沒有公因式的分式,叫做最簡分式.
三. 分式的加減法
※1. 分式與分數類似,也可以通分.根據分式的基本性質,把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.
※2. 分式的加減法:
分式的加減法與分數的加減法一樣,分為同分母的分式相加減與異分母的分式相加減.
(1)同分母的分式相加減,分母不變,把分子相加減;
上述法則用式子表示是:
(2)異號分母的分式相加減,先通分,變為同分母的分式,然後再加減;
上述法則用式子表示是:
※3. 概念內涵:
通分的關鍵是確定最簡分母,其方法如下:最簡公分母的系數,取各分母系數的最小公倍數;最簡公分母的字母,取各分母所有字母的最高次冪的積,如果分母是多項式,則首先對多項式進行因式分解.
四. 分式方程
※1. 解分式方程的一般步驟:
①在方程的兩邊都乘最簡公分母,約去分母,化成整式方程;
②解這個整式方程;
③把整式方程的根代入最簡公分母,看結果是不是零,使最簡公母為零的根是原方程的增根,必須捨去.
※2. 列分式方程解應用題的一般步驟:
①審清題意;
②設未知數;
③根據題意找相等關系,列出(分式)方程;
④解方程,並驗根;
⑤寫出答案.

第四章 相似圖形
一. 線段的比
※1. 如果選用同一個長度單位量得兩條線段AB, CD的長度分別是m、n,那麼就說這兩條線段的比AB:CD=m:n ,或寫成 .
※2. 四條線段a、b、c、d中,如果a與b的比等於c與d的比,即 ,那麼這四條線段a、b、c、d叫做成比例線段,簡稱比例線段.
※3. 注意點:
①a:b=k,說明a是b的k倍;
②由於線段 a、b的長度都是正數,所以k是正數;
③比與所選線段的長度單位無關,求出時兩條線段的長度單位要一致;
④除了a=b之外,a:b≠b:a, 與 互為倒數;
⑤比例的基本性質:若 , 則ad=bc; 若ad=bc, 則
二. 黃金分割
※1. 如圖1,點C把線段AB分成兩條線段AC和BC,如果 ,那麼稱線段AB被點C黃金分割,點C叫做線段AB的黃金分割點,AC與AB的比叫做黃金比.
※2.黃金分割點是最優美、最令人賞心悅目的點.
四. 相似多邊形
¤1. 一般地,形狀相同的圖形稱為相似圖形.
※2. 對應角相等、對應邊成比例的兩個多邊形叫做相似多邊形.相似多邊形對應邊的比叫做相似比.
五. 相似三角形
※1. 在相似多邊形中,最為簡簡單的就是相似三角形.
※2. 對應角相等、對應邊成比例的三角形叫做相似三角形.相似三角形對應邊的比叫做相似比.
※3. 全等三角形是相似三角的特例,這時相似比等於1. 注意:證兩個相似三角形,與證兩個全等三角形一樣,應把表示對應頂點的字母寫在對應的位置上.
※4. 相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比.
※5. 相似三角形周長的比等於相似比.
※6. 相似三角形面積的比等於相似比的平方.
六.探索三角形相似的條件
※1. 相似三角形的判定方法:
一般三角形 直角三角形
基本定理:平行於三角形的一邊且和其他兩邊(或兩邊的延長線)相交的直線,所截得的三角形與原三角形相似.
①兩角對應相等;
②兩邊對應成比例,且夾角相等;
③三邊對應成比例. ①一個銳角對應相等;
②兩條邊對應成比例:
a. 兩直角邊對應成比例;
b. 斜邊和一直角邊對應成比例.
※2. 平行線分線段成比例定理:三條平行線截兩條直線,所得的對應線段成比例.
如圖2, l1 // l2 // l3,則 .
※3. 平行於三角形一邊的直線與其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似.
八. 相似的多邊形的性質
※相似多邊形的周長等於相似比;面積比等於相似比的平方.
九. 圖形的放大與縮小
※1. 如果兩個圖形不僅是相似圖形,而且每組對應點所在的直線都經過同一點,那麼這樣的兩個圖形叫做位似圖形; 這個點叫做位似中心; 這時的相似比又稱為位似比.
※2. 位似圖形上任意一對對應點到位似中心的距離之比等於位似比.
◎3. 位似變換:
①變換後的圖形,不僅與原圖相似,而且對應頂點的連線相交於一點,並且對應點到這一交點的距離成比例.像這種特殊的相似變換叫做位似變換.這個交點叫做位似中心.
②一個圖形經過位似變換後得到另一個圖形,這兩個圖形就叫做位似形.
③利用位似的方法,可以把一個圖形放大或縮小.

第五章 數據的收集與處理
一. 每周幹家務活的時間
※1. 所要考察的對象的全體叫做總體;
把組成總體的每一個考察對象叫做個體;
從總體中取出的一部分個體叫做這個總體的一個樣本.
※2. 為一特定目的而對所有考察對象作的全面調查叫做普查;
為一特定目的而對部分考察對象作的調查叫做抽樣調查.
二. 數據的收集
※1. 抽樣調查的特點: 調查的范圍小、節省時間和人力物力優點.但不如普查得到的調查結果精確,它得到的只是估計值.
而估計值是否接近實際情況還取決於樣本選得是否有代表性.
第六章 證明(一)
二. 定義與命題
※1. 一般地,能明確指出概念含義或特徵的句子,稱為定義.
定義必須是嚴密的.一般避免使用含糊不清的術語,例如「一些」、「大概」、「差不多」等不能在定義中出現.
※2. 可以判斷它是正確的或是錯誤的句子叫做命題.
正確的命題稱為真命題,錯誤的命題稱為假命題.
※3. 數學中有些命題的正確性是人們在長期實踐中總結出來的,並且把它們作為判斷其他命題真假的原始依據,這樣的真命題叫做公理.
※4. 有些命題可以從公理或其他真命題出發,用邏輯推理的方法判斷它們是正確的,並且可以進一步作為判斷其他命題真假的依據,這樣的真命題叫做定理.
¤5. 根據題設、定義以及公理、定理等,經過邏輯推理,來判斷一個命題是否正確,這樣的推理過程叫做證明.
三. 為什麼它們平行
※1. 平行判定公理: 同位角相等,兩直線平行.(並由此得到平行的判定定理)
※2. 平行判定定理: 同旁內互補,兩直線平行.
※3. 平行判定定理: 同錯角相等,兩直線平行.
四. 如果兩條直線平行
※1. 兩條直線平行的性質公理: 兩直線平行,同位角相等;
※2. 兩條直線平行的性質定理: 兩直線平行,內錯角相等;
※3. 兩條直線平行的性質定理: 兩直線平行,同旁內角互補.
五. 三角形和定理的證明
※1. 三角形內角和定理: 三角形三個內角的和等於180°
¤2. 一個三角形中至多隻有一個直角
¤3. 一個三角形中至多隻有一個鈍角
¤4. 一個三角形中至少有兩個銳角
六. 關注三角形的外角
※1. 三角形內角和定理的兩個推論:
推論1: 三角形的一個外角等於和它不相鄰的兩個內角的和;
推論2: 三角形的一個外角大於任何一個和它不相鄰的內角.

(註:※表示重點部分;¤表示了解部分;◎表示僅供參閱部分;)

❸ 初二數學第四章相似圖形

全等三角形:
能夠完全重合的兩個三角形稱為全等三角形。(註:全等三角形是相似三角形中的特殊情況)
當兩個三角形完全重合時,互相重合的頂點叫做對應頂點,互相重合的邊叫做對應邊,互相重合的角叫做對應角。
由此,可以得出:全等三角形的對應邊相等,對應角相等。
(1)全等三角形對應角所對的邊是對應邊,兩個對應角所夾的邊是對應邊;
(2)全等三角形對應邊所對的角是對應角,兩條對應邊所夾的角是對應角;
(3)有公共邊的,公共邊一定是對應邊;
(4)有公共角的,角一定是對應角;
(5)有對頂角的,對頂角一定是對應角
--------------------------------------------------------證明
1、三組對應邊分別相等的兩個三角形全等(簡稱SSS或「邊邊邊」),這一條也說明了三角形具有穩定性的原因。

2、有兩邊及其夾角對應相等的兩個三角形全等(SAS或「邊角邊」)。

3、有兩角及其夾邊對應相等的兩個三角形全等(ASA或「角邊角」)。
由3可推到

4、有兩角及其一角的對邊對應相等的兩個三角形全等(AAS或「角角邊」)

5、直角三角形全等條件有:斜邊及一直角邊對應相等的兩個直角三角形全等(HL或「斜邊,直角邊」)
所以,SSS,SAS,ASA,AAS,HL均為判定三角形全等的定理。
注意:在全等的判定中,沒有AAA和SSA,這兩種情況都不能唯一確定三角形的形狀。
A是英文角的縮寫(angle),S是英文邊的縮寫(side)。
--------------------------------------------------------------性質及證明
1、全等三角形的對應角相等、對應邊相等。
2、全等三角形的對應邊上的高對應相等。
3、全等三角形的對應角平分線相等。
4、全等三角形的對應中線相等。
5、全等三角形面積相等。
6、全等三角形周長相等。
(以上可以簡稱:全等三角形的對應元素相等)
7、三邊對應相等的兩個三角形全等。(SSS)
8、兩邊和它們的夾角對應相等的兩個三角形全等。(SAS)
9、兩角和它們的夾邊對應相等的兩個三角形全等。(ASA)
10、兩個角和其中一個角的對邊對應相等的兩個三角形全等。(AAS)
11、斜邊和一條直角邊對應相等的兩個直角三角形全等。(HL)
---------------------------------------------------------------運用:
1、性質中三角形全等是條件,結論是對應角、對應邊相等。 而全等的判定卻剛好相反。
2、利用性質和判定,學會准確地找出兩個全等三角形中的對應邊與對應角是關鍵。在寫兩個三角形全等時,一定把對應的頂點,角、邊的順序寫一致,為找對應邊,角提供方便。
3,當圖中出現兩個以上等邊三角形時,應首先考慮用SAS找全等三角形。
4、用在實際中,一般我們用全等三角形測等距離。以及等角,用於工業和軍事。有一定幫助。
-------------------------------------------------技巧:
一般來說考試中線段和角相等需要證明全等。
因此我們可以來採取逆思維的方式。
來想要證全等,則需要什麼條件
另一種則要根據題目中給出的已知條件,求出有關信息。
然後把所得的等式運用(AAS/ASA/SAS/SSS/HL)證明三角形全等。

對應角相等,對應邊成比例的兩個三角形叫做相似三角形。(similar triangles)。
互為相似形的三角形叫做相似三角形
-------------------------------------------------------------
相似三角形的判定方法
:根據相似圖形的特徵來判斷。(對應邊成比例,對應角相等)
1.平行於三角形一邊的直線(或兩邊的延長線)和其他兩邊相交,所構成的三角形與原三角形相似;
(這是相似三角形判定的引理,是以下判定方法證明的基礎。這個引理的證明方法需要平行線分線段成比例的證明)
2.如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那麼這兩個三角形相似;

3.如果兩個三角形的兩組對應邊的比相等,並且相應的夾角相等,那麼這兩個三角形相似;

4.如果兩個三角形的三組對應邊的比相等,那麼這兩個三角形相似;
--------------------------------------------------------------------
直角三角形相似判定定理
1.斜邊與一條直角邊對應成比例的兩直角三角形相似。
2.直角三角形被斜邊上的高分成的兩個直角三角形與原直角三角形相似,並且分成的兩個直角三角形也相似。
射影定理
三角形相似的判定定理推論
推論一:頂角或底角相等的那個的兩個等腰三角形相似。
推論二:腰和底對應成比例的兩個等腰三角形相似。
推論三:有一個銳角相等的兩個直角三角形相似。
推論四:直角三角形被斜邊上的高分成的兩個直角三角形和原三角形都相似。
推論五:如果一個三角形的兩邊和其中一邊上的中線與另一個三角形的對應部分成比例,那麼這兩個三角形相似。
推論六:如果一個三角形的兩邊和第三邊上的中線與另一個三角形的對應部分成比例,那麼這兩個三角形相似。
-----------------------------------------------------------------
相似三角形的性質:
1.相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等於相似比。
2.相似三角形周長的比等於相似比。
3.相似三角形面積的比等於相似比的平方。
------------------------------------------------------------------
相似三角形的特例:
能夠完全重合的兩個三角形叫做全等三角形。(congruent triangles)
全等三角形是相似三角形的特例。全等三角形的特徵:
1.形狀完全相同,相似比是k=1。
全等三角形一定是相似三角形,而相似三角形不一定是全等三角形。
因此,相似三角形包括全等三角形。
全等三角形的定義
能夠完全重合的兩個三角形稱為全等三角形。(註:全等三角形是相似三角形中的特殊情況)
當兩個三角形完全重合時,互相重合的頂點叫做對應頂點,互相重合的邊叫做對應邊,互相重合的角叫做對應角。
由此,可以得出:全等三角形的對應邊相等,對應角相等。
(1)全等三角形對應角所對的邊是對應邊,兩個對應角所夾的邊是對應邊;
(2)全等三角形對應邊所對的角是對應角,兩條對應邊所夾的角是對應角;
(3)有公共邊的,公共邊一定是對應邊;
(4)有公共角的,角一定是對應角;
(5)有對頂角的,對頂角一定是對應角;
三角形全等的判定公理及推論
1、三組對應邊分別相等的兩個三角形全等(簡稱SSS或「邊邊邊」),這一條也說明了三角形具有穩定性的原因。
2、有兩邊及其夾角對應相等的兩個三角形全等(SAS或「邊角邊」)。
3、有兩角及其夾邊對應相等的兩個三角形全等(ASA或「角邊角」)。
由3可推到
4、有兩角及一角的對邊對應相等的兩個三角形全等(AAS或「角角邊」)
5、直角三角形全等條件有:斜邊及一直角邊對應相等的兩個直角三角形全等(HL或「斜邊,直角邊」)
所以,SSS,SAS,ASA,AAS,HL均為判定三角形全等的定理。
注意:在全等的判定中,沒有AAA和SSA,這兩種情況都不能唯一確定三角形的形狀。
A是英文角的縮寫(angle),S是英文邊的縮寫(side)。
全等三角形的性質
1、全等三角形的對應角相等、對應邊相等。
2、全等三角形的對應邊上的高對應相等。
3、全等三角形的對應角平分線相等。
4、全等三角形的對應中線相等。
5、全等三角形面積相等。
6、全等三角形周長相等。
7、三邊對應相等的兩個三角形全等。(SSS)
8、兩邊和它們的夾角對應相等的兩個三角形全等。(SAS)
9、兩角和它們的夾邊對應相等的兩個三角形全等。(ASA)
10、兩個角和其中一個角的對邊對應相等的兩個三角形全等。(AAS)
11、斜邊和一條直角邊對應相等的兩個直角三角形全等。(HL)
全等三角形的運用
1、性質中三角形全等是條件,結論是對應角、對應邊相等。 而全等的判定卻剛好相反。
2、利用性質和判定,學會准確地找出兩個全等三角形中的對應邊與對應角是關鍵。在寫兩個三角形全等時,一定把對應的頂點,角、邊的順序寫一致,為找對應邊,角提供方便。
3,當圖中出現兩個以上等邊三角形時,應首先考慮用SAS找全等三角形。
4、用在實際中,一般我們用全等三角形測等距離。以及等角,用於工業和軍事。有一定幫助。
全等三角形做題技巧
一般來說考試中線段和角相等需要證明全等。
因此我們可以來採取逆思維的方式。
來想要證全等,則需要什麼
另一種則要根據題目中給出的已知條件,求出有關信息。
然後把所得的等式運用(AAS/ASA/SAS/SSS/HL)證明三角形全等。
位似
概念:相似且對應頂點的連線相交於一點,對應邊互相平行的兩個圖形叫做位似。
位似一定相似但相似不一定位似~

你說我累不累呢?,

❹ 北師大版八年級下數學全部內容知識點總結!!! 急急急

·
第一章
一元一次不等和一元一次不
·
1、不等關系
·
2、不等式的基本性質
·
3、不等式的解集
·
4、一元一次不等式
·
5、一元一次不等式與一次函數
·
6、一元一次不等式組
·
第二章
分解因式
·
1、提公因式法
·
2、運用公式法
·
第三章
分式
·
1、分式的乘除法
·
2、分式的加減法
·
3、分式方程
·
第四章
相似圖形
·
1、線段的比
·
2、黃金分割
·
3、形狀相同的圖形
·
4、相似多邊形
·
5、相似三角形
·
6、探索三角形相似的條件
·
7、測量旗桿的高度
·
8、相似多邊形的周長比和面積比
·
9、圖形的放大與縮小
第五章
數據的收集與處理
·
1、每周幹家務活的時間
·
2、數據的收集
·
3、頻數與頻率
·
4、數據的波動
·
5、證明(一)
·
6、你能肯定嗎
·
7、定義與命題
·
8、為什麼它們平行
·
9、如果兩條直線平行
·
10、三角形內角和定理的證明
·
11、關注三角形的外角

❺ 初中數學(北師大版)全部知識點,重要知識點要標上重要,內容必須通俗易懂,要有自己總結出來的方法

初中的數學主要是分代數和幾何兩大部分,兩者在中考中所佔的比例,代數略大於幾何
代數主要有以下幾點:
1,有理數的運算,主要講有理數的三級運算(加減乘除和乘方開方)在這里要注意數字和字母的符號意識,就是,不要受小學數字的影響,一看見字母就不會做題了。
2,整式的三級運算,注意符號意識的培養,還有就是因式分解,這和整式的乘法是互換的,注意像平方差公式和完全平方公式的正用、逆用和變形用。
3,方程,會一元一次、二元一次、三元一次、一元二次四種方程的解法和應用,記住,方程是一種方法,是一種解題的手段。
4,函數,會識別一次函數、二次函數、反比例函數的圖像,記住他們的特徵,要會根據條件來應用。尤其要注意二次函數,這是中考的重點和難點。應用題里會拿它來出一道難題的

幾何主要有以下幾點:
1,識別各種平面圖形和立體圖形,這你應該非常熟悉。
2,圖形的平移、旋轉和軸對稱,這個考察你的空間想像的能力,多做一些題。
3,三角形的全等和相似,要會證明,注意要有完整的過程和嚴密的步驟,背過證明三角形全等的五種方法和證明相似的四種方法;還有像等腰三角形、直角三角形和黃金三角形的性質,要會應用,這在證明題中會有很大的幫助。
4,四邊形,把握好平行四邊形、長方形、正方形、菱形和梯形的概念,選擇體里會拿著它們之間的微小差異而大做文章,注意它們的判定和性質,證明題里也會考到。
5,圓,我這里沒有細學,因為這里不是我們中考的重點,但是圓的難度會很大,它的知識點很多、很碎,圓的難題就是由許許多多細小的點構成的。

❻ 北師大版八年級下冊數學具體內容

第一章 一元一次不等式和一元一次不等式組
一、一般地,用符號「<」(或「≤」),「>」(或「≥」)連接的式子叫做不等式。
能使不等式成立的未知數的值,叫做不等式的解. 不等式的解不唯一,把所有滿足不等式的解集合在一起,構成不等式的解集. 求不等式解集的過程叫解不等式.
由幾個一元一次不等式組所組成的不等式組叫做一元一次不等式組
不等式組的解集 :一元一次不等式組各個不等式的解集的公共部分。
等式基本性質1:在等式的兩邊都加上(或減去)同一個數或整式,所得的結果仍是等式. 基本性質2:在等式的兩邊都乘以或除以同一個數(除數不為0),所得的結果仍是等式.
二、不等式的基本性質1:不等式的兩邊都加上(或減去)同一個整式,不等號的方向不變. (註:移項要變號,但不等號不變。)性質2:不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變.性質3:不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變.不等式的基本性質<1>、 若a>b, 則a+c>b+c;<2>、若a>b, c>0 則ac>bc若c<0, 則ac<bc
不等式的其他性質:反射性:若a>b,則b<a;傳遞性:若a>b,且b>c,則a>c
三、解不等式的步驟:1、去分母; 2、去括弧; 3、移項合並同類項; 4、系數化為1。 四、解不等式組的步驟:1、解出不等式的解集2、在同一數軸表示不等式的解集。 五、列一元一次不等式組解實際問題的一般步驟:(1) 審題;(2)設未知數,找(不等量)關系式;(3)設元,(根據不等量)關系式列不等式(組)(4)解不等式組;檢驗並作答。
六、常考題型: 1、 求4x-6 7x-12的非負數解. 2、已知3(x-a)=x-a+1r的解適合2(x-5) 8a,求a 的范圍.
3、當m取何值時,3x+m-2(m+2)=3m+x的解在-5和5之間。

第二章 分解因式
一、公式:1、 ma+mb+mc=m(a+b+c)2、a2-b2=(a+b)(a-b)3、a2±2ab+b2=(a±b)2 二、把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式。 1、把幾個整式的積化成一個多項式的形式,是乘法運算.2、把一個多項式化成幾個整式的積的形式,是因式分解.3、ma+mb+mc m(a+b+c)4、因式分解與整式乘法是相反方向的變形。
三、把多項式的各項都含有的相同因式,叫做這個多項式的各項的公因式.提公因式法分解因式就是把一個多項式化成單項式與多項式相乘的形式. 找公因式的一般步驟:(1)若各項系數是整系數,取系數的最大公約數;(2)取相同的字母,字母的指數取較低的;(3)取相同的多項式,多項式的指數取較低的.(4)所有這些因式的乘積即為公因式.
四、分解因式的一般步驟為:(1)若有「-」先提取「-」,若多項式各項有公因式,則再提取公因式.(2)若多項式各項沒有公因式,則根據多項式特點,選用平方差公式或完全平方公式.(3)每一個多項式都要分解到不能再分解為止.
五、形如a2+2ab+b2或a2-2ab+b2的式子稱為完全平方式. 分解因式的方法: 1、提公因式法。2、運用公式法。
第三章 分式
註:1°對於任意一個分式,分母都不能為零.
2°分式與整式不同的是:分式的分母中含有字母,整式的分母中不含字母.
3°分式的值為零含兩層意思:分母不等於零;分子等於零。( 中B≠0時,分式有意義;分式 中,當B=0分式無意義;當A=0且B≠0時,分式的值為零。)
常考知識點:1、分式的意義,分式的化簡。2、分式的加減乘除運算。3、分式方程的解法及其利用分式方程解應用題。

第四章 相似圖形
一、 定義 表示兩個比相等的式子叫比例.如果a與b的比值和c與d的比值相等,那麼 或a∶b=c∶d,這時組成比例的四個數a,b,c,d叫做比例的項,兩端的兩項叫做外項,中間的兩項叫做內項.即a、d為外項,c、b為內項. 如果選用同一個長度單位量得兩條線段AB、CD的長度分別是m、n,那麼就說這兩條線段的比(ratio)AB∶CD=m∶n,或寫成 = ,其中,線段AB、CD分別叫做這兩個線段比的前項和後項.如果把 表示成比值k,則 =k或AB=k•CD. 四條線段a,b,c,d中,如果a與b的比等於c與d的比,即 ,那麼這四條線段a,b,c,d叫做成比例線段,簡稱比例線段. 黃金分割的定義:在線段AB上,點C把線段AB分成兩條線段AC和BC,如果 ,那麼稱線段AB被點C黃金分割(golden section),點C叫做線段AB的黃金分割點,AC與AB的比叫做黃金比.其中 ≈0.618. 引理:平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例. 相似多邊形: 對應角相等,對應邊成比例的兩個多邊形叫做相似多邊形. 相似多邊形:各角對應相等、各邊對應成比例的兩個多邊形叫做相似多邊形。 相似比:相似多邊形對應邊的比叫做相似比.
二、比例的基本性質:1、若ad=bc(a,b,c,d都不等於0),那麼 .如果(b,d都不為0),那麼ad=bc.2、合比性質:如果 ,那麼 。3、等比性質:如果 =…= (b+d+…+n≠0),那麼 。4、更比性質:若 那麼 。5、反比性質:若 那麼
三、求兩條線段的比時要注意的問題:(1)兩條線段的長度必須用同一長度單位表示,如果單位長度不同,應先化成同一單位,再求它們的比;(2)兩條線段的比,沒有長度單位,它與所採用的長度單位無關;(3)兩條線段的長度都是正數,所以兩條線段的比值總是正數.
四、相似三角形(多邊形)的性質:相似三角形對應角相等,對應邊成比例,相似三角形對應高的比、對應角平分線的比和對應中線的比都等於相似比。相似多邊形的周長比等於相似比,面積比等於相似比的平方.
五、全等三角形的判定方法有:ASA,AAS,SAS,SSS,直角三角形除此之外再加HL
六、相似三角形的判定方法,判斷方法有:1.三邊對應成比例的兩個三角形相似;2.兩角對應相等的兩個三角形相似;3.兩邊對應成比例且夾角相等;4.定義法: 對應角相等,對應邊成比例的兩個三角形相似。5、定理:平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似。 在特殊的三角形中,有的相似,有的不相似.1、兩個全等三角形一定相似.2、兩個等腰直角三角形一定相似.3、兩個等邊三角形一定相似.4、兩個直角三角形和兩個等腰三角形不一定相似.
七、位似圖形上任意一對對應點到位似中心的距離之比等於位似比。 如果兩個圖形不僅是相似圖形,而且每組對應點所在的直線都經過同一個點,那麼這樣的兩個圖形叫做位似圖形,這個點叫位似中心,這時的相似比又稱為位似比。
八、常考知識點:1、比例的基本性質,黃金分割比,位似圖形的性質。2、相似三角形的性質及判定。相似多邊形的性質。
第五章四邊形

❼ 北師大版數學七、八年級各章知識點

代數
因式分解 分組分解
二次根式 化簡、公式 的運用、分母有理化、最簡二次根式
分式運算 異分母分式的混合運算(通分、符號、運算順序)
一元二次方程 韋達定理的運用、求根公式、十字相乘法
分式方程 去分母法解分式方程 、換元法解分式方程(驗根)
不等式 解不等式組
正比例函數 性質(k的正負與圖象的關系)、解析式的確定
一次函數 性質(k、b的正負與圖象的關系)、解析式的確定、與x、y軸的交點、兩直線交點、
面積問題
二次函數 基本性質(開口方向、對稱軸、頂點坐標、最值)、解析式的確定(三種形式)
a、b、c的正負與圖象的關系、拋物線與x軸的兩交點距離公式、拋物線與x軸的交點個數、y=ax2 y=ax2+c y=ax2+bx的圖象特點、a+b+c、a-b+c、2a+b、2a-b等的符號判斷、平移問題、面積問題、與韋達定理的綜合、與相似三角形的綜合、與圓的綜合、與三角函數的綜合等
反比例函數 定義的兩種形式y=kx -1、面積不變性、中心對稱性
函數的應用 根據函數圖象解題、根據題意列函數關系式求最大(小)值
統計 眾數、中位數、平均數及其變化規律、方差公式、方差的變化規律、標准差、頻數、頻率性質
概率 樹狀圖、列表法求概率、計算方法求概率
幾何
三角形 特殊三角形(等腰三角形、直角三角形)的性質
全等三角形 判定與性質
相似三角形 記憶相似基本型(如比例中項型等)、相似判定常用「角角」,但不要忽略「邊角邊」
四邊形 平行四邊形、矩形、菱形、正方形(重點)性質、等腰梯形性質、梯形的輔助線作法
多邊形 內角和公式、利用外角和求正多邊形的邊數
解直角三角形 正弦、餘弦、正切、餘切的定義、特殊角的三角函數值等
圓 重要定理:垂徑定理、等對等定理推論、圓周角定

❽ 北師大初中數學知識點總結

北師大版初中數學定理知識點匯總[九年級(上冊)
第一章 證明(二)
※等腰三角形的「三線合一」:頂角平分線、底邊上的中線、底邊上的高互相重合。
※等邊三角形是特殊的等腰三角形,作一條等邊三角形的三線合一線,將等邊三角形分成兩個全等的
直角三角形,其中一個銳角等於30º,這它所對的直角邊必然等於斜邊的一半。
※有一個角等於60º的等腰三角形是等邊三角形。
※如果知道一個三角形為直角三角形首先要想的定理有:
①勾股定理: (注意區分斜邊與直角邊)
②在直角三角形中,如有一個內角等於30º,那麼它所對的直角邊等於斜邊的一半
③在直角三角形中,斜邊上的中線等於斜邊的一半(此定理將在第三章出現)
※垂直平分線是垂直於一條線段並且平分這條線段的直線。(注意著重號的意義)
<直線與射線有垂線,但無垂直平分線>
※線段垂直平分線上的點到這一條線段兩個端點距離相等。
※線段垂直平分線逆定理:到一條線段兩端點距離相等的點,在這條線段的垂直平分線上。
※三角形的三邊的垂直平分線交於一點,並且這個點到三個頂點的距離相等。(如圖1所示,AO=BO=CO)

※角平分線上的點到角兩邊的距離相等。
※角平分線逆定理:在角內部的,如果一點到角兩邊的距離相等,則它在該角的平分線上。
角平分線是到角的兩邊距離相等的所有點的集合。
※三角形三條角平分線交於一點,並且交點到三邊距離相等,交點即為三角形的內心。
(如圖2所示,OD=OE=OF)
第二章 一元二次方程
※只含有一個未知數的整式方程,且都可以化為 (a、b、c為
常數,a≠0)的形式,這樣的方程叫一元二次方程。
※把 (a、b、c為常數,a≠0)稱為一元二次方程的一般形式,a為二次項系數;b為一次項系數;c為常數項。
※解一元二次方程的方法:①配方法 <即將其變為 的形式>
②公式法 (注意在找abc時須先把方程化為一般形式)
③分解因式法 把方程的一邊變成0,另一邊變成兩個一次因式的乘積來求解。(主要包括「提公因式」和「十字相乘」)
※配方法解一元二次方程的基本步驟:①把方程化成一元二次方程的一般形式;
②將二次項系數化成1;
③把常數項移到方程的右邊;
④兩邊加上一次項系數的一半的平方;
⑤把方程轉化成 的形式;
⑥兩邊開方求其根。
※根與系數的關系:當b2-4ac>0時,方程有兩個不等的實數根;
當b2-4ac=0時,方程有兩個相等的實數根;
當b2-4ac<0時,方程無實數根。
※如果一元二次方程 的兩根分別為x1、x2,則有: 。
※一元二次方程的根與系數的關系的作用:
(1)已知方程的一根,求另一根;
(2)不解方程,求二次方程的根x1、x2的對稱式的值,特別注意以下公式:
① ② ③
④ ⑤
⑥ ⑦其他能用 或 表達的代數式。
(3)已知方程的兩根x1、x2,可以構造一元二次方程:
(4)已知兩數x1、x2的和與積,求此兩數的問題,可以轉化為求一元二次方程 的根
※在利用方程來解應用題時,主要分為兩個步驟:①設未知數(在設未知數時,大多數情況只要設問題為x;但也有時也須根據已知條件及等量關系等諸多方面考慮);②尋找等量關系(一般地,題目中會含有一表述等量關系的句子,只須找到此句話即可根據其列出方程)。
※處理問題的過程可以進一步概括為:
第三章 證明(三)
※平行四邊的定義:兩線對邊分別平行的四邊形叫做平行四邊形,平行四邊形不相鄰的兩頂點連成的線段叫做它的對角線。
※平行四邊形的性質:平行四邊形的對邊相等,對角相等,對角線互相平分。
※平行四邊形的判別方法:兩組對邊分別平行的四邊形是平行四邊形。
兩組對邊分別相等的四邊形是平行四邊形。
一組對邊平行且相等的四邊形是平行四邊形。
兩條對角線互相平分的四邊形是平行四邊形。
※平行線之間的距離:若兩條直線互相平行,則其中一條直線上任意兩點到另一條直線的距離相等。這個距離稱為平行線之間的距離。
菱形的定義:一組鄰邊相等的平行四邊形叫做菱形。
※菱形的性質:具有平行四邊形的性質,且四條邊都相等,兩條對角線互相垂直平分,每一條對角線平分一組對角。
菱形是軸對稱圖形,每條對角線所在的直線都是對稱軸。
※菱形的判別方法:一組鄰邊相等的平行四邊形是菱形。
對角線互相垂直的平行四邊形是菱形。
四條邊都相等的四邊形是菱形。
※矩形的定義:有一個角是直角的平行四邊形叫矩形。矩形是特殊的平行四邊形。
※矩形的性質:具有平行四邊形的性質,且對角線相等,四個角都是直角。(矩形是軸對稱圖形,有兩條對稱軸)
※矩形的判定:有一個內角是直角的平行四邊形叫矩形(根據定義)。
對角線相等的平行四邊形是矩形。
四個角都相等的四邊形是矩形。
※推論:直角三角形斜邊上的中線等於斜邊的一半。
正方形的定義:一組鄰邊相等的矩形叫做正方形。
※正方形的性質:正方形具有平行四邊形、矩形、菱形的一切性質。(正方形是軸對稱圖形,有兩條對稱軸)
※正方形常用的判定:有一個內角是直角的菱形是正方形;
鄰邊相等的矩形是正方形;
對角線相等的菱形是正方形;
對角線互相垂直的矩形是正方形。
正方形、矩形、菱形和平行邊形四者之間的關系(如圖3所示):
※梯形定義:一組對邊平行且另一組對邊不平行的四邊形叫做梯形。
※兩條腰相等的梯形叫做等腰梯形。
※一條腰和底垂直的梯形叫做直角梯形。

※等腰梯形的性質:等腰梯形同一底上的兩個內角相等,對角線相等。
同一底上的兩個內角相等的梯形是等腰梯形。
※三角形的中位線平行於第三邊,並且等於第三邊的一半。
※夾在兩條平行線間的平行線段相等。
※在直角三角形中,斜邊上的中線等於斜邊的一半
第四章 視圖與投影
※三視圖包括:主視圖、俯視圖和左視圖。
三視圖之間要保持長對正,高平齊,寬相等。一般地,俯視圖要畫在主視圖的下方,左視圖要畫在正視圖的右邊。
主視圖:基本可認為從物體正面視得的圖象
俯視圖:基本可認為從物體上面視得的圖象
左視圖:基本可認為從物體左面視得的圖象
※視圖中每一個閉合的線框都表示物體上一個表面(平面或曲面),而相連的兩個閉合線框一定不在一個平面上。
※在一個外形線框內所包括的各個小線框,一定是平面體(或曲面體)上凸出或凹的各個小的平面體(或曲面體)。
※在畫視圖時,看得見的部分的輪廓線通常畫成實線,看不見的部分輪廓線通常畫成虛線。
物體在光線的照射下,會在地面或牆壁上留下它的影子,這就是投影。
太陽光線可以看成平行的光線,像這樣的光線所形成的投影稱為平行投影。
探照燈、手電筒、路燈的光線可以看成是從一點出發的,像這樣的光線所形成的投影稱為中心投影。
※區分平行投影和中心投影:①觀察光源;②觀察影子。
眼睛的位置稱為視點;由視點發出的線稱為視線;眼睛看不到的地方稱為盲區。
※從正面、上面、側面看到的圖形就是常見的正投影,是當光線與投影垂直時的投影。
①點在一個平面上的投影仍是一個點;
②線段在一個面上的投影可分為三種情況:
線段垂直於投影面時,投影為一點;
線段平行於投影面時,投影長度等於線段的實際長度;
線段傾斜於投影面時,投影長度小於線段的實際長度。
③平面圖形在某一平面上的投影可分為三種情況:
平面圖形和投影面平行的情況下,其投影為實際形狀;
平面圖形和投影面垂直的情況下,其投影為一線段;
平面圖形和投影面傾斜的情況下,其投影小於實際的形狀。

第五章 反比例函數
※反比例函數的概念:一般地, (k為常數,k≠0)叫做反比例函數,即y是x的反比例函數。
(x為自變數,y為因變數,其中x不能為零)
※反比例函數的等價形式:y是x的反比例函數 ←→ ←→ ←→ ←→ 變數y與x成反比例,比例系數為k.
※判斷兩個變數是否是反比例函數關系有兩種方法:①按照反比例函數的定義判斷;②看兩個變數的乘積是否為定值<即 >。(通常第二種方法更適用)
※反比例函數的圖象由兩條曲線組成,叫做雙曲線
※反比例函數的畫法的注意事項:①反比例函數的圖象不是直線,所「兩點法」是不能畫的;
②選取的點越多畫的圖越准確;
③畫圖注意其美觀性(對稱性、延伸特徵)。
※反比例函數性質:
①當k>0時,雙曲線的兩支分別位於一、三象限;在每個象限內,y隨x的增大而減小;
②當k<0時,雙曲線的兩支分別位於二、四象限;在每個象限內,y隨x的增大而增大;
③雙曲線的兩支會無限接近坐標軸(x軸和y軸),但不會與坐標軸相交。
※反比例函數圖象的幾何特徵:(如圖4所示)
點P(x,y)在雙曲線上都有

第六章 頻率與概率
※在頻率分布表裡,落在各小組內的數據的個數叫做頻數;
每一小組的頻數與數據總數的比值叫做這一小組的頻率; 即:
在頻率分布直方圖中,由於各個小長方形的面積等於相應各組的頻率,而各組頻率的和等於1。因此,各個小長方形的面積的和等於1。
※頻率分布表和頻率分布直方圖是一組數據的頻率分布的兩種不同表示形式,前者准確,後者直觀。
用一件事件發生的頻率來估計這一件事件發生的概率。
可用列表的方法求出概率,但此方法不太適用較復雜情況。
※假設布袋內有m個黑球,通過多次試驗,我們可以估計出布袋內隨機摸出一球,它為白球的概率;
※要估算池塘里有多少條魚,我們可先從池塘里捉上100條魚做記號,再放回池塘,之後再從池塘中捉上200條魚,如果其中有10條魚是有標記的,再設池塘共有x條魚,則可依照 估算出魚的條數。(注意估算出來的數據不是確切的,所以應謂之「約是XX」)
※生活中存在大量的不確定事件,概率是描述不確定現象的數學模型,它能准確地衡量出事件發生的可能性的大小,並不表示一定會發生。