當前位置:首頁 » 基礎知識 » 中小學數學知識框架
擴展閱讀
數學教資課程知識怎麼學 2025-01-17 07:58:23
山東高中數學必備知識 2025-01-17 07:33:25

中小學數學知識框架

發布時間: 2022-07-21 14:28:56

㈠ 總結小學數學知識體系

數與代數 實踐與綜合運用 空間與圖形 統計與概率
數的認識 數的運算 常見的量 式與方程 探索規律 圖形的認識 測 量 圖形和變換 圖形與位置 數據統計初步 不確定現象 可能性
一上 10以內數的認識 10以內數的加減法 認識鍾表 (分類) 數學樂園 認識立體圖形 條形統計圖雛形
11-20各數的認識 20以內的進位加法 (整時與半時) 我們的校園 認識平面圖形
一下 100以內數的認識 20以內退位減法 元\角\分 找規律 擺一擺,想一想 圖形的拼組 以一當一統計圖
100以內加減法一 時與分 (圖形和數) 小小商店 長\正方形特點
二上 100以內加減法二 數學廣角 我長高了 不同方向看物 米和厘米的認識 以一當二統計圖
乘法含義及表內乘 (排列\組合) 看一看,擺一擺 角的初步認識
二下 1000以內數認識 除法含義及表內除 克和千克認識 (解決問題) 找規律 剪一剪 銳角與鈍角 平移與旋轉 復式統計表
萬以內數的認識 萬以內加減法(一) (周期與遞增) 有多重 以一當五統計圖
三上 分數的初步認識 萬以內加減法(二) 噸的認識 數學廣角 填一填,說一說 四邊形的認識 周長的含義及計算 可能與一定 可能性大小
有餘數的除法 秒的認識 毫米\分米的認識
多位數乘一位數 時間的計算 (排列\組合) 擲一擲 千米的認識
三下 小數的初步認識 除數是一位數除法 年 月 日 (解決問題) 數學廣角 製作年歷 面積的含義 用八個方位詞描述物體方向 簡單數據分析
兩位數乘兩位數 24時記時法 (集合) 長\正方形面積計算 簡單路線圖
小數的簡單加減 (等量代換) 設計校園 平均數
四上 億以內的數 用計算器計算 數學廣角 1億有多大 直線\射線\角 角的度量 復式條形統計圖
比億大的數 三位數乘兩位數 垂直與平行 畫角
除數是兩位數除法 (統籌原理) 你寄過賀卡嗎 四邊形與梯形
四下 小數的意義和性質 四則運算 數學廣角 營養午餐 三角形的分類 根據方向和距離確定位置 單式折線統計圖
運算定律與簡便算 三角形的性質
小數的加減法 (植樹問題) 小管家 圖形的拼組
五上 小數乘\除法 用字母表示數 數學廣角 量一量 找規律 觀察物體 平行四邊形面積 公平性
積\商近似數 (正\左\上面) 三角形面積
計算器探索規律 梯形面積
解決問題 解簡易方程 (編碼) 鋪一鋪 組合圖形面積
五下 因數和倍數 同分母加減法 數學廣角 粉刷圍牆 認識長\正方體 體\容積意義 軸對稱 眾 數
2\5\3的倍數特徵 異分母加減法 長\正方體表面積
質數和合數 分數加減混合運算 長\正方體體積 旋轉90度 復式折線統計圖
分數的意義和性質 (稱找次品) 打電話
約分(最大公因數) 欣賞設計
通分(最小公倍數)
六上 百分數意義 分數乘\除法 數學廣角 確定起跑線 圓的認識 圓的周長計算 用數對定位置 扇形統計圖
百\分\小數互化 分\小數混合運算
解決問題
比和比的運用 (雞兔同籠) 合理存款 圓的面積計算
六下 負數的認識 比例的意義和性質 數學廣角 自行車里的數學 圓柱的認識 圓柱的表面積 扇形統計圖分析
完整的數軸 正\反比例的意義
數的大小比較 比例的應用 (抽屜原理) 節約用水 圓錐的認識 圓柱體積計算 折線統計圖分析
(圖形放大與縮小) 圓柱的展開圖 圓錐體積計算

㈡ 小學數學知識框架圖

長方形周長:(長+寬)*2 註:*表示乘,/表示除。

長方形面積:長*寬

正方形周長:邊長*4

正方形面積:邊長*邊長

梯形面積:(上底+下底)*高/2

三角形面積:底*高/2

圓形周長:3.14*直徑或3.14*半徑*2

圓形面積:3.14*半徑的平方,也就是3.14*半徑*半徑

平行四邊形面積:底*高

㈢ 小學數學教材的基本結構

作為一名一線數學教師,我們都有自己對新課程改革實施以來的一些經驗積累,經過近幾年的實踐與探索,我們深深體會到:要使用好新教材,在數學課堂上培養學生的數學素養、創新意識、實踐能力,促進學生全面、持續、和諧的發展,課堂教學是改革的關鍵。因為課堂是學校教育的中心環節,教材的具體實施要通過課堂來實現,教育教學觀念是否轉變,課程標准基本理念是否得以體現主要是通過課堂教學來反映。下面我就簡單介紹一下我劃分的幾種課型:新授課、練習課、復習課、矯正課(講評課)。

作為新授課,在我們所有課型當中,應該說是最重要的。學生知識的掌握和理解大部分都都來自新授課,新授課質量的高低直接影響著學生的成績。我認為新授課的基本結構模式是:問題----探究----概括----答疑----練習。下面我就結合平常教學談談新授課教學的程序。

(1)創設情境,引入新知:

數學來源於生活,我們可以從生活中挖掘出與教材內容息息相關的素材,或談話引入,或情境引入,或製作成課件,用課件引入,通過生活實際引導學生發現數學問題,再通過學生提出的數學問題引入新課,使學生產生濃厚的學習興趣,並明確學習任務,使學生從每節課的數學課中感受到,生活中到處是數學,學數學可以解決生活中的很多問題。

(2)啟發引導,組織研討

教師針對學生提出的切合主題的問題,引導學生研究探索,動手實踐,合作交流,尋找解決問題的方式方法。這個環節的實施,低年級學生提倡師生共同研討,教師導,學生探索、交流,由淺入深,一步一步深入;中、高年級學生,教師結合教材內容及學生實際,可採用低年級師生共同研討的辦法,也可放手讓學生自主探索,但放手讓學生自主探索必須作探索方法指導,如指導學生觀察課本情境圖,指導學生動手實踐,或指導學生小組合作交流等等,集體的指導和個別的指導要相結合,使學生探索有目的、有方法。

(3)深入指導,歸納小結

通過學生自主探索後,教師組織學生集體討論,通過學生探索的解決問題的方式方法,引導學生圍繞中心內容歸納小結,形成初步系統的知識鏈。

(4)質疑問難,答疑解惑

學貴知疑,要使學生多思善思,必須先會多問善問。根據學生的質疑,教師可以把握大量的反饋信息,從而有針對性地進行疏導、釋疑、解惑,提高課堂教學的效率。我們尤其要鼓勵學困生質疑,耐心地給予解答,及時表揚鼓勵,這樣有利於兼顧「兩頭」,大面積提高教學質量。這需要我們長期不厭其煩的指導、鼓勵,使學生養成提問題的習慣,從而培養良好的思維習慣、學習習慣,不斷提高思維水平。同時,作為教師,如果我們認為哪個方面可能學生不一定清楚,由教師提問,學生解決,這也是非常有意義的。

(5)分層練習、反饋矯正

學生理解了新知識後,還需要通過練習加深理解,使知識轉化成技能,並通過練習發展學生的思維能力。練習設計要有計劃、有目的、有層次,由淺入深,由易到難,注意麵向全體,及時反饋及時矯正,及時獎勵及時強化,加強指導,最後變式提高。、

練習課是新授課的補充和延續,其主要任務是鞏固數學基礎知識和形成熟練的技能技巧。一般是在新知識教完後(新課後的自主練習)進行或一個單元後(綜合練習)。練習課教學,關鍵是練習題的設計和選擇。要注意練習的目的性、典型性、針對性、層次性、多樣性和趣味性;要注意運用題組練習,加強各種練習的協調和配合,提高練習的整體效率;練習的編排要由易到難,循序漸進;練習的結果要及時反饋評價,引導學生在對比中弄清區別,在辨析中加深理解,在概括中把握聯系,在評價中受到激勵。練習的量要適當,既要保證知識的鞏固和技能技巧的形成,又要防止學生的負擔過重。我認為,練習課的基本結構是這樣的:

(1)檢查復習。主要是回憶已學的基礎知識,特別是本課內容所需的基礎知識,同時,也進行一些基本技能訓練(包括口算訓練和解決問題的基礎訓練等)。

(2)揭示課題。明確練習的內容和要求。

(3)練習指導。練習課應防止機械重復的練習,應該有指導地進行練習,使學生通過練習有所提高。教師的練習指導,可簡要分析練習中要應用的法則、定律,並要求學生注意容易出錯的地方。有時可先組織板演練習,然後通過對錯題的評講,進行練習指導,這樣做比較自然。

(4)課堂練習。這是練習課的主要部分,要有充分的時間讓學生練習,練習要分層次,要注意應用題組練習,加強練習題之間的聯系和配合,提高練習的整體效益。

(5)練習評講。對練習中發現的普遍性問題進行評講,使學生進一步加深理解所學知識,當堂解決問題。通過練後評講,使學生的認識水平有所提高。

(6)課堂小結。可先讓學生自己小結:通過練習課,自己有什麼提高,弄清了什麼問題,總結解題規律和分析練習中的問題,作進一步的練習。

復習課的主要任務是復習鞏固所學的知識,使學生加深對已有知識的理解,並把知識系統化、條理化。根據教學進度,可以分成單元復習、期中復習和期末復習。

復習課的目的是通過對知識的條理化、綜合化、系統化的整理,使學生對知識加深理解、牢固掌握、靈活運用。復習課要有利於建構知識結構,提示知識之間內在的、本質的和必然的聯系。從縱、橫兩方面加深對知識的理解,彌補學習上的缺陷,減少記憶負擔,防止遺忘,促進學生認知結構的形成和完善。

我認為,復習課的基本結構是這樣的:

(1)宣布復習的內容和要求。

(2)出示復習提綱。對擬復習的內容作概略式的提示,幫助學生回顧總結已學過的知識,建立知識之間的縱橫聯系,加深對知識的理解,特別是重點內容。可以提出復習提綱,讓學生討論,也可以安排例題進行講解,重點指導學生如何綜合運用所學的知識解題。

(3)復習習題。這是復習課的主要部分。教師根據復習內容和要求,布置具有明確目的的復習題組,讓學生練習,使學生通過復習作業,把知識串聯起來,使之系統化、條理化、網路化,便於儲存、提取和應用。在復習進行的過程中,可安排基本練習題,鞏固、理解學過的知識。復習後的練習要有針對性,既有基本題,又有綜合題,重點要解決解題思路。

(4)復習講解。根據學生在做復習練習時反饋出來的信息,有的放矢地進行系統講解,關鍵在於把知識系統化、條理化,構建知識結構,並根據學生在復習練習時出現的問題,進行重點分析。

(5)課堂小結。可讓學生自己先作小結,通過復習課有些什麼收獲,明確了哪些問題,在此基礎上教師再做簡要的小結。必要時可以有針對性地適當布置一些家庭作業,達到繼續復習鞏固的目的。

四、矯正課(講評課)

矯正課是以總結學生的學習成果,糾正作業或測驗考查中的錯誤,鼓勵先進,幫助後進,為後繼學習掃除障礙為主要任務的課。講評前,要對學生的作業或考卷進行認真分析,找出帶共性的一般性問題,講評中,要注意發揮學生的主體作用,讓學生在講評中提高認識,受到激勵,講評後,要布置一些與講評內容密切相關的作業,讓學生練習,提高學生對講評內容的認識水平。

講評課的一般結構:

(1)情況通報。教師說明作業完成情況或測驗考查的結果。出示作業或考卷分析表。介紹作業或測驗的平均分、及格率等統計分析指標,對照教學目標,指出哪些知識點學得較好,哪些知識點還有問題。對考得較好或學習有進步的學生提出表揚,對學習有困難的學生進行鼓勵。

(2)導入課題,出示目標。根據作業或測驗中反映出來的主要問題確定講評課題和教學目標。

(3)講評。對有創見的解答加以介紹,對有代表性的錯誤分類進行評講。

(4)針對性練習。根據存在的主要問題進行針對性練習。

(5)總結。讓學生總結出自己的錯誤,及以後如何改正。

新課程改革使我們的課堂教學充滿了生機與活力,也給我們的課堂教學改革帶來了更大的發展空間和進一步發展的契機。我們准備著迎接新的挑戰,也期待著更的大收獲。

㈣ 小學數學四年級知識點梳理

小學數學四年級(上冊) 知識點
數數知識點:
1、認識數級、數位、計數單位,並了解它們之間的對應關系。
數級 …… 億級 萬級 個級
數位 …… 千億位 百億位 十億位 億

位 千萬位 百萬位 十萬位 萬

位 千

位 百

位 十

位 個


計數單位 …… 千億 百億 十億 億 千萬 百萬 十萬 萬 千 百 十 個
2、十進制計數法。相鄰兩個計數單位之間的進率是十。
3、數數。能一萬一萬地數,十萬十萬地數,一百萬一百萬地數……

億以內數的讀法、寫法知識點:
1、 億以內數的讀數方法。
含有個級、萬級和億級的數,必須先讀億級,再讀萬級,最後讀個級。(即從高位讀起)億級或萬級的數都按個級讀數的方法,在後面要加上億或萬。在級末尾的零不讀,在級中間的零必須讀。中間不管連續有幾個零,只讀一個零。
2、 億以內數的寫數方法。
從高位寫起,按照數位的順序寫,中間或末尾哪一位上一個單位也沒有,就在那一位上寫0。
3、 比較數大小的方法。
多位數比較大小,如果位數不同,那麼位數多的這個數就大,位數少的這個數就小。如果位數相同,從左起第一位開始比起,哪個數字大,哪個數就大。如果左起第一位上的數相同,就開始比第二位……直到比出大小為止。

北師大版小學數學四年級(下冊)知識點

一 小數的認識和加減法

【知識要點】

小數的意義

1、小數的意義: 用來表示十分之幾、百分之幾、千分之幾……的數,叫小數。

2、體會十進分數與小數的關系,並能互相轉。

3、表示十分之幾的小數是一位小數,百分之幾的小數是兩位小數,千分之幾的小數是三位小數……

4、小數的讀寫法。

5、藉助計數器,介紹小數部分的數位以及數位之間的進率

6、掌握小數的數位和計數單位 。

7、了解小數的組成:整數部分和小數部分

測量活動(小數的單位換算 )

1、1分米=0.1米 1厘米=0.01米 1克=0.001千克……學會低級單位與高級單位之間的互化(長度單位,面積單位,重量單位……)。低級單位轉化為高級單位時,先將這個低級單位的數改寫成分數的形式,再寫成小數的形式。

2、會進行單名數與復名數之間的互化。

比大小(比較小數的大小)

1、會比較兩個小數的大小以及將幾個小數按大小順序排列。

2、比較小數大小的方法:先看整數部分,整數部分大的小數就大。整數部分相同,再看小數部分的十分位,十分位上數字大的小數就大……

購物小票-----小數的加減法(不進位,不退位)

1、不進位加法,不退位減法的計算方法:小數點對齊,也就是相同數位對齊,再按照整數加減法的法則進行計算。

2、能解決簡單的小數加減法的實際問題。

量 體 重----小數的加減法(進位加、退位減)

1、小數進位加法和退位減法的計演算法則(同整數加、減法的法則相同)。

2、小數的性質:小數末尾加上「0」或去掉「0」小數的大小不變。

3、整數減去小數,可以在整數小數點的後面添上「0」,幫助計算。

歌手大賽---小數加、減法的混合運算

1、掌握小數混合運算的順序與整數四則混合運算一樣。

2、整數加、減法的運算定律同樣適用於小數加減法。

3、掌握小數加、減法的估算。

二 認識圖形

【知識框架】

1、圖形分類(按不同標准給已知圖形進行分類)

三角形的分類(認識直角三角形、銳角三角形、鈍角三角形、等腰三角形、等邊三角形)

2、三角形 三角形內角和

三角形三邊之間的關系

3、四邊形的分類(初步認識梯形、進一步認識平行四邊形)

4、圖案欣賞

【知識要點】

圖形分類

1、按照不同的標准給已知圖形進行分類:

(1)按平面圖形和立體圖形分;

(2)按平面圖形時否由線段圍成來分的;

(3)按圖形的邊數來分。通過自己動手分類,對圖形進行再認識,了解圖形的特徵。

2、了解平行四邊形易變形和三角形的穩定性在生活中的應用。

三角形分類

1、把三角形按照不同的標准分類,並說明分類依據。

(1)按角分,分為:直角三角形、銳角三角形、鈍角三角形,並了解其本質特徵:三個角都是銳角的三角形是銳角三角形,有一個角是直角的三角形是直角三角形,有一個角是鈍角的三角形是鈍角三角形。

(2)按邊分,分為:等腰三角形、等邊三角形、任意三角形。有兩條邊相等的三角形是等腰三角形,三條邊都相等的三角形是等邊三角形。

2、通過分類,使學生弄清等腰三角形和等邊三角形的關系:等邊三角形是特殊

的等腰三角形。

三角形內角和

1、任意一個三角形內角和等於180度。

2、 能應用三角形內角和的性質解決一些簡單的問題。

三角形邊的關系

1、 三角形任意兩邊之和大於第三邊。
2、根據上述知識點判斷所給的已知長度的三條線段能否圍成三角形。如果能圍

成三角形,能圍成一個什麼樣的三角形。

四邊形的分類

1、通過觀察、比較、分類等活動,了解由四條線段圍成的圖形是四邊形,四邊形中有兩組對邊分別平行的四邊形是平行四邊形,只由一組對邊平行的四邊形是梯形。

2、知道長方形、正方形是特殊的平行四邊形。

3、了解正方形、長方形、等腰梯形、菱形、等腰三角形、等邊三角形、圓形是軸對稱圖形。

圖 案 欣 賞

1、通過欣賞圖案,體會圖形排列的規律,感受圖案的美。
2、利用對稱、平移和旋轉,設計簡單的圖案。

三 小數乘法

【知識框架】

小數乘法的意義 小數乘法的意義

小數點移動引起小數大小變化的規律

積的小數位數與乘數的小數位數的關系

計算小數乘法 會用豎式計算小數乘法及估算

小數的混合運算(整數運算定律完全適合小數)

【知識要點】

文具店(小數乘法的意義)

通過具體情境教學使學生了解小數與整數相乘就是表示幾個相同加數的和的簡便運算。

1、小數乘法的意義

小數乘法的意義比整數乘法的意義,有了進一步的擴展.小數乘法的意義包括兩種情況:一是同整數乘法的意義相同,即求相同加數的和的簡便運算.二是求一個數的十分之幾,百分之幾……是多少.

2、小數的計演算法則

計算小數乘法,先按照整數乘示的法則算出積,再看因數中一共有幾位小數,就從積的右邊起數出幾位,點上小數點.小數計算乘法,用的是轉化的思想方法.先把小數轉化為整數算出積,再確定小數點的位置,還原成小數乘法的積.如6.2×0.3看作62×3相乘的積是186,因數中一共有兩位小數,就從186的右邊起數出兩位,點上小數點還原成小數乘法的積1.86.因此,小數乘法的關鍵是處理好小數點.在點小數點時注意,乘得的積的小數位數不夠時,要在前面用0補足,如0.04×0.2=0.008,在8的前面補兩個0,點上小數點後,整數部分也寫一個0.

小數點搬家(掌握小數點移動引起小數大小變化的規律)

明白小數點向左移動一位,小數就縮小到原來的十分之一;小數點向左移動兩位,小數就縮小到原來的百分之一……以此類推。小數點向右移動一位,這個數就擴大到原來的10倍;小數點向右移動兩位,這個數就擴大到原來100倍……以此類推。

街心廣場(積的小數位數與乘數的小數位數的關系)

積的小數位數與乘法的小數位數的關系:小數乘法中各個因數中小數的位數和就是這道題中積的小數的位數。

包裝(小數乘法2)

小數乘小數計算方法,即將小數乘法轉化為整數乘法進行計算。根據乘數擴大的倍數,將積縮小相同倍數,進一步體會到兩個乘數共有幾位小數,積就有幾位小數。

爬行最慢的哺乳動物(小數乘法3)

進一步理解小數乘小數的計算方法即兩個因數里共有幾位小數,積就有幾位小數;當其中的一個因數是整十數時,積中如果有一位小數,就在末尾畫掉一個零……

手拉手(小數的混合運算)

小數四則混合運算的運算順序與整數四則混合運算的順序相同。整數的運算定律在小數運算中仍然適用。例如乘法的結合律,交換律,分配律。等等。

四 觀察物體

不同位置觀察物體的范圍不同

不同位置觀察物體的形狀不同

節日禮物(不同位置觀察物體的范圍不同)

1、隨著觀察位置的高低與遠近變化,能判斷出觀察對象的畫面所發生的相應變化。

2、根據觀察到的畫面,判斷出觀察者所在的位置。

天安門廣場(不同位置觀察物體的形狀不同)

1、通過觀察、比較一些照片,能夠識別和判斷拍攝地點與照片的對應關系。

2、通過觀察連續拍攝到的一組照片,能夠判斷照片拍攝的前後順序。

第五單元「小數除法」
《精打細算》―――除數是整數的小數除法

(1)、小數除法的意義:小數除法的意義與整數除法的意義相同,是已知兩個因數的積與其中的一個因數,求另一個因數的運算。

(2)、小數除以整數的計算方法:除數為整數的小數除法和整數除法的計算類似,只要商的小數點和被除數的小數點對齊就可以了。

2、《參觀博物館》―――整數除以整數商是小數的小數除法

整數除以整數,商是小數的小數除法的計算方法:先按照整數除法的法則去做,如果除到被除數的末尾仍有餘數,就在後面填上0繼續除。

3、《誰打電話的時間長》―――除數是小數的除法

(1)、商不變的規律:被除數和除數同時擴大或縮小相同的倍數(0除外),商不變。

(2)、除數是小數的小數除法的計算方法:要把被除數和除數擴大相同的倍數,使除數變成整數,再按照小數除以整數的方法進行計算。

4、《人民幣兌換》―――積、商的近似值

求近似值方法:積取近似值是先精確計算,再根據題目要求取近似值;商取近似值是直接根據要求多除一位,然後根據題目要求取近似值。注意:有時會出現四不舍、五不入的情況,應根據題目的特點去求出近似數。

5、《誰爬得快》―――循環小數

(1)、循環現象:生活中很多時候有依次不斷重復出現的現象。如:日出日落、時間……

(2)、循環小數:從小數部分的某一位起,一個數字或幾個數字依次不斷地重復出現,這樣的小數就叫做循環小數。

(3)、 會用四捨五入法對循環小數取近似值,方法與小數取近似值的方法相同,保留幾位小數就看這個小數的下一位。

6、《電視.......》――小數的四則混合運算

(1)、小數連除和乘除混合運算,運算順序和整數是一樣的。

(2)、計算小數四則混合運算和整數四則混合運算的順序完全相同。

激情奧運

(1)通過「奧運」提供的各種信息,綜合應用所學的知識和方法,解決有關的問題。

(2)通過解決奧運賽場上的有關問題,體會到數學和體育這間的聯系,進一步體會數學的價值。

六 游戲公平

【知識框架】

通過游戲活動,體驗事件發生的等可能性。

等可能

通過游戲活動分析,判斷游戲規則的公平

能制定公平的游戲規則。

能通過實驗感受實際生活中的隨機性。

可能性不相等

游戲公平能通過游戲活動,體驗事件發生可能性不相等。

能辨別游戲可能性是否相等。

能通過自己的分析思考修改游戲規則使之公平,且方法多樣。誰 先 走(判斷規則的公平性,設計公平的規則)

【知識要點】

1、體會事件發生的等可能性。體會可能性相同游戲公平,可能性不同游戲不公平。

2、感受規則在游戲中的作用,建立規則意識。並會制定公平的游戲規則。

3、進一步體驗游戲中存在的隨機性的特點。

七 方程

用字母表示數.

方程1.方程的意義2.解簡易方程3.列方程解應用題

【知識要點】

用字母表示數

1、用字母表示運算定律和有關圖形的面積公式。

例如:加法交換律:a+b=b+a

加法結合律:a+b+c=a+(b+c)

減法的特性:a-b-c=a-(b+c)

乘法交換律:a×b=b×a

乘法結合律:a×b×c=a×(b×c)

乘法分配律:a×(b+c)=a×b×a×c

正方形周長:c=4a正方形面積:s=a×a

長方形的周長:C=(a+b)×2長方形面積:s=a×b

此外,還可以拓展到以前曾經學過的

路程=速度×時間總價=單價×數量……

2、字母表示數的時候,字母與數字相乘,字母與字母相乘,中間的乘號可以用小圓點代替或者省略。例如:a×5=5·a=5a 數字一般都寫在字母的前面。

3、區別a的平方和2乘a的區別。

方程(方程的意義)

1、了解方程的意義:含有未知數的等式叫做方程。

2、掌握方程與等式的關系:方程是等式但等式不一定是方程.或者說方程屬於等式,等式包含方程.並能用圖形表示.

3、根據情境圖找出等量關系,會列方程。

天平游戲一(解簡易方程未知數是加數或被減數)

1、等式兩邊都加上或減去同一個數,等式仍然成立。

2、能根據等式的這個性質求出方程中的未知數。

方程的解:使方程左右兩邊相等的未知數的值叫做方程的解。

解方程:求方程的解的過程叫做解方程。

3、學會檢驗方程的解是否正確。

天平游戲二(解簡易方程未知數是因數或被除數)

1、等式兩邊都乘或除以同一個數(零除外),等式仍然成立。

2、能根據一定的情境,列方程解決問題。

猜數游戲(解簡易方程)

1、會利用等式的性質解ax±b=c類型的方程。並能夠把方程的解帶回方程中進行檢驗。

2、會用方程解答簡單的應用題。

郵票的張數(列方程解應用題)

1、學會解形如cx±ax=b這樣的方程,能夠運用方程解應用題。

2、使學生掌握應將一倍數設為未知數.

㈤ 小學數學知識大全

良好的學習習慣能使孩子收益終身,尤其是小學階段,小學階段是孩子從一個天真頑劣的小孩到一個真正接受知識的小學生,從各個方面進行要求規范的時期。在這個時期良好的學習方法是孩子成績優異的關鍵,很多家長不知道如何給孩子補習小學數學,那今天就帶大家一起了解補習小學數學的五大技巧。

現在的時代是一個多元化的教育時代,孩子們的大腦不僅僅是課上的40分鍾,而是要勇於積極的探索,在給孩子補習小學數學的時候著眼於以上幾點,加上對課本知識的結合,孩子的成績定會有所提高,於此同時孩子更多的學習到的是掌握知識的方法。

㈥ 小學數學知識有什麼嗎

小學數學公式大全,
第一部分: 概念。
1,加法交換律:兩數相加交換加數的位置,和不變。
2,加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。
3,乘法交換律:兩數相乘,交換因數的位置,積不變。
4,乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5,乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。
如:(2+4)×5=2×5+4×5
6,除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 0除以任何不是0的數都得0。
簡便乘法:被乘數,乘數末尾有0的乘法,可以先把0前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
7,什麼叫等式 等號左邊的數值與等號右邊的數值相等的式子叫做等式。
等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
8,什麼叫方程式 答:含有未知數的等式叫方程式。
9, 什麼叫一元一次方程式 答:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。
學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
10,分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11,分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
12,分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。
異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
13,分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14,分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15,分數除以整數(0除外),等於分數乘以這個整數的倒數。
16,真分數:分子比分母小的分數叫做真分數。
17,假分數:分子比分母大或分子和分母相等的分數叫做假分數。假分數大於或等於1。
18,帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
19,分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
20,一個數除以分數,等於這個數乘以分數的倒數。
21,甲數除以乙數(0除外),等於甲數乘以乙數的倒數。
分數的加,減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數的乘法則:用分子的積做分子,用分母的積做分母。
22,什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3
比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。
23,什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18
24,比例的基本性質:在比例里,兩外項之積等於兩內項之積。
25,解比例:求比例中的未知項,叫做解比例。如3:χ=9:18
26,正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k( k一定)或kx=y
27,反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。 如:x×y = k( k一定)或k / x = y
28,百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。
29,把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。
30,把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
31,把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。
32,把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。
33,要學會把小數化成分數和把分數化成小數的化發。
34,最大公約數:幾個數都能被同一個數一次性整除,這個數就叫做這幾個數的最大公約數。(或幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個, 叫做最大公約數。)
35,互質數: 公約數只有1的兩個數,叫做互質數。
36,最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。
37,通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)
38,約分:把一個分數化成同它相等,但分子,分母都比較小的分數,叫做約分。(約分用最大公約數)
39,最簡分數:分子,分母是互質數的分數,叫做最簡分數。
40,分數計算到最後,得數必須化成最簡分數。
41,個位上是0,2,4,6,8的數,都能被2整除,即能用2進行約分。個位上是0或者5的數,都能被5整除,即能用5進行約分。在約分時應注意利用。
43,偶數和奇數:能被2整除的數叫做偶數。不能被2整除的數叫做奇數。
44,質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。
45,合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。
46,利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)
47,利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。
48,自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。
49,循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。如3。 141414
50,不循環小數:一個小數,從小數部分起,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做不循環小數。如圓周率:3。 141592654
51,無限不循環小數:一個小數,從小數部分起到無限位數,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做無限不循環小數。如3。 141592654……
52,什麼叫代數 代數就是用字母代替數。
53,什麼叫代數式 用字母表示的式子叫做代數式。如:3x =ab+c
小學數學公式大全,第二部分:計算公式。
數量關系式:
1, 每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數
2, 1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數
3, 速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4, 單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5, 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率
6, 加數+加數=和 和-一個加數=另一個加數
7, 被減數-減數=差 被減數-差=減數 差+減數=被減數
8, 因數×因數=積 積÷一個因數=另一個因數
9, 被除數÷除數=商 被除數÷商=除數 商×除數=被除數
和差問題的公式
(和+差)÷2=大數(和-差)÷2=小數
和倍問題的公式
和÷(倍數-1)=小數小數×倍數=大數(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數小數×倍數=大數(或 小數+差=大數)
植樹問題:
1 非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1全長=株距×(株數-1)株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距全長=株距×株數株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1全長=株距×(株數+1) 株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距全長=株距×株數株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題:
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題:
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣〈1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
面積,體積換算
(1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米
(2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
(3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米
(4)1公頃=10000平方米 1畝=666。666平方米
(5)1升=1立方分米=1000毫升 1毫升=1立方厘米
重量換算:
1噸=1000 千克1千克=1000克1千克=1公斤
人民幣單位換算
1元=10角1角=10分1元=100分
時間單位換算:
1世紀=100年 1年=12月大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月平年2月28天, 閏年2月29天
平年全年365天, 閏年全年366天
1日=24小時 1時=60分1分=60秒 1時=3600秒
小學數學公式大全,第三部分:幾何體。
1、正方形
正方形的周長=邊長×4 公式:C=4a
正方形的面積=邊長×邊長 公式:S=a×a
正方體的體積=邊長×邊長×邊長 公式:V=a×a×a
2、長方形
長方形的周長=(長+寬)×2 公式:C=(a+b)×2
長方形的面積=長×寬 公式:S=a×b
長方體的體積=長×寬×高 公式:V=a×b×h
3、三角形三角形的面積=底×高÷2。 公式:S= a×h÷2
4、平行四邊形平行四邊形的面積=底×高 公式:S= a×h
5、梯形梯形的面積=(上底+下底)×高÷2 公式:S=(a+b)h÷2
6、圓直徑=半徑×2 公式:d=2r半徑=直徑÷2 公式:r= d÷2
圓的周長=圓周率×直徑 公式:c=πd =2πr圓的面積=半徑×半徑×π 公式:S=πrr
7、圓柱
圓柱的側面積=底面的周長×高。 公式:S=ch=πdh=2πrh
圓柱的表面積=底面的周長×高+兩頭的圓的面積。 公式:S=ch+2s=ch+2πr2
圓柱的總體積=底面積×高。 公式:V=Sh
8、圓錐
圓錐的總體積=底面積×高×1/3 公式:V=1/3Sh
三角形內角和=180度。
平行線:同一平面內不相交的兩條直線叫做平行線
垂直:兩條直線相交成直角,像這樣的兩條直線,
我們就說這兩條直線互相垂直,其中一條直線叫做另一條直線的垂線,這兩條直線的交點叫做垂足。

㈦ 小學數學知識點總結(全部)

對於那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬於基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養成良好習慣的時期,注重培養孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?

由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態,不能見考試就膽怯,調整心態很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.

㈧ 小學初中高中數學是怎麼個框架

一般都分為數與代數,空間與幾何,概率與統計三部分框架,每個學期課本復習歸納時都按這三部分來復習的