A. 年月日是幾年級哪學期的內容
年月日是三年級下學期的內容。
小學三年級數學下冊《年月日》知識點歸類如下:
1、常用的是時間單位有:(時、分、秒),(年、月、日)。
2、1年=12個月1天=24小時1小時=60分1分=60秒1星期=7天。
3、一年有12個月,其中有7個月是大月,每月有31天;有4個月是小月,每月有30天;二月有時有28天,有時有29天。
4、判斷平閏年,有兩種方法:第一種方法是看2月:有28天的是平年,有29天的是閏年。第二種方法是用年份除以4(整百數除以400),有餘數的是平年,沒余數的是閏年。
5、每三個平年一個閏年,即四年一個閏年,只有閏年才有2月29日。
6、平年一年有365天(31×7+30×4+28=365),有52個星期零1天,閏年有366天(31×7+30×4+29=366),有52個星期零2天。
7、一三五七八十臘,三十一天用不差,四六九冬三十天,只有二月二十八,每逢四年閏一日,一定要在二月加。
B. 三年級數學年月日順口溜有哪些
三年級數學年月日順口溜:
一、三、五、七、八、十、臘(即十二月),
三十一天永不差。
四六九冬三十天,只有二月二十八。
每逢四年閏一日,一定要在二月加。
計算方法
歷法是推算年、月、日的長度和它們之間的關系,制訂時間順序的法則叫"歷法"。以回歸年為單位,在一年中安排多少個整數月,在一個月中又安排多少個整數天的方法和怎樣選取一年的起算點的方法就叫歷法。
歷法問題的復雜性全在於回歸年和朔望月這兩個周期太零碎,它們同"日"之間的關系,不像公里同米之間的關系那樣簡單;而且,它們彼此之間也不能通約。
以上內容參考:網路-年月日
C. 2月到底算不算小月,小學數學三年級下冊的知識
二月不是小月。同時二月也不是大月。
陽歷中的大小月:
4﹑6﹑9﹑11為小月30天,1﹑3﹑5﹑7﹑8﹑10﹑12為大月31天, 平年2月為28天,閏年2月為29天。
陽歷的大小月有一定規則,七月以前單月為大月,雙月為小月;八月以後,雙月為大月,而單月為小月,於是一、三、五、七、八、十、十二月為大月,四、六、九、十一月為小月。
(3)數學三年級下冊年月知識擴展閱讀:
在羅馬獨裁者愷撒公元前46年1月1日起執行的儒略歷中,原為交替大小月,其中八月原來應排為小月,因為後來獨裁者屋大維是生於此月,元老院將此月改為他的稱號「奧古斯都」,從二月中抽出一天補上,變為大月,將後面的月份重新排大小月。
閏年共有366天(1-12月分別為31天,29天,31天,30天,31天,30天,31天,31天,30天,31天,30天,31天)。
平年共有365天(1-12月分別為31天,28天,31天,30天,31天,30天,31天,31天,30天,31天,30天,31天)。
時間單位換算關系:1年=12個月(平年,閏年為13個月);1個季度=3個月;1個星期=7天;1天=24小時;1小時=60分鍾;1分鍾=60秒。
中國古代時間單位換算:
(1)一甲子即60年。
(2)1個月=3旬;1旬=2候=10天;1候=5天。
(3)1刻=15分鍾;1字=5分鍾(閩南廣東地區用法)。
(4)1夜=5更;1更=5點;1點=24分鍾。
(5)1個時辰=2個小時。
D. 三年級下冊數學年日日所有知識免費輔導 百度網盤
飛翔三年級語文數學英語下冊 網路網盤
鏈接: https://pan..com/s/1T0HvZU20Osn1Wj5HSljsWA
若資源有問題歡迎追問~
E. 三年級下冊數學內容有哪些
三年級下冊的教學內容主要包括:除數是一位數的除法,兩位數乘兩位數,小數的初步認識,位置與方向(一),面積,年、月、日,復式統計表,用數學解決問題,數學廣角和綜合與實踐活動等。下面基本按單元順序對本冊教材的修訂情況進行簡要說明。
一、位置與方向(一)
本單元內容包括:在現實情境中認識東、南、西、北、東北、西北、東南和西南八個方向,並能用這些詞語描述物體所在的方向;了解在平面圖上如何表示方向,並能描述平面圖上物體的相對位置;第讓學生利用所學習的方向的知識解決生活中的實際問題。與實驗教材相比,主要有以下幾個方面的變化。
1.根據《義務教育數學課程標准(2011版)》的要求,降低了難度
《義務教育數學課程標准(2011版)》對第一學段「圖形與位置」的課程內容做了修改:一是刪去了「會看簡單的路線圖」的內容和要求;二是降低了對「東北、東南、西北、西南」這四個方向的教學要求,不再要求根據一個方向(東、南、西或北)辨認出這四個方向,只要知道這四個方向就可以了。因此,修訂後的教材刪去了實驗教材中有關路線圖的內容,同時,在需要辨認「東北、東南、西北、西南」這四個方向的時候,都採用標準的地圖的畫法,並給出指「北」的方向標,以便於學生先判斷出四個基本方向,再進一步辨認這四個方向。
2.根據對實驗教材的意見,將例3和例5整合為例4,讓學生綜合應用所學的方位知識解決問題,培養學生提出問題的意識,提高解決問題的能力
對三年級的學生來說,東、南、西、北等方位概念還是比較抽象的,學生需要大量的感性材料支撐和豐富的表象積累,才能較好地掌握這些概念。因此,教學時要以學生已有的知識和生活經驗為基礎,創設大量的體驗方位的活動,讓所有的學生都參與到活動中來。鼓勵學生獨立思考,敢於發表自己的意見,並能與同伴交流自己的想法。使學生在多樣的活動中進行觀察、操作、想像、描述、表示和交流,豐富對方位知識的體驗,積累活動經驗,進一步發展良好的空間觀念。
二、除數是一位數的除法
本單元的主要內容有:口算除法、筆算除法和用估算解決問題。「除數是一位數的除法」口算和筆算是小學生應該掌握和形成的基礎知識和基本技能,也是進一步學習多位數筆算除法的基礎。與實驗教材相比,修訂後的教材仍然十分重視落實雙基,同時注重在使學生獲得基本數學思想和基本數學活動經驗方面及培養學生解決問題的能力方面有所突破。
1.調整例題設計,使教學內容和教學順序更為合理
本單元的教學內容安排體現了「由簡到繁,由易到難」的認知規律,按照「口算—筆算—用估算解決問題」的順序分為三個層次編排。第一個層次是口算除法。根據《義務教育數學課程標准(2011版)》的要求,在實驗教材的基礎上,增加了幾十幾除以一位數(每一位都能除盡)的例題口算方法。在讓學生用已有的口算方法解決新問題的同時,為理解筆算算理作鋪墊。第二個層次是筆算除法(例1~例7)。(1)按照「由一般到特殊」的原則,先安排「商中沒有0」的除法,再安排「商中有0」的除法,便於學生在掌握一般方法的基礎上,自主探究特殊的計算方法。(2)按照「由易到難」的原則,先安排「兩位數除以一位數」再安排「三位數除以一位數」;先安排「首位能除盡」的除法,再安排「首位不能被除盡」的除法。根據實驗教材的反饋意見,增加了例3,教學三位數除以一位數,首位上能除盡的題目,減小教學的坡度。第三個層次是解決問題(例8和例9,重點教學如何將估算作為的一個有效策略來解決問題),這是整套修訂後教材關於估算教學的一大特色。
2.重視對算理的理解和計算方法的總結和概括
(1)加強對算理的理解,溝通算理和演算法的聯系。第一,無論在教學口算還是筆算時,教材都注重通過直觀操作幫助學生理解算理。例如,在「口算除法」的小節中創設了平均分彩色手工紙的情境,將手工紙設計為10張一沓,給出直觀圖展示分的過程和結果,為學生理解算理提供直觀支撐。第二,在筆算除法中,重視溝通算理與演算法的聯系。分步給出了豎式的演算過程,並配合給出小棒圖展示平均分的過程,還標注了每一個結果的含義或每一個結果的計算方法,幫助學生理解除法豎式的每一步的算理,實現了從算理到演算法的自然過渡。
(2)重視對計算方法的總結和概括,培養歸納推理的能力。在學生獲得大量計算活動經驗的基礎上,教材重視讓學生對計演算法則進行歸納和總結。在進一步掌握演算法,形成計算技能的同時,培養學生歸納推理的能力。例如,在探索了大量的除數是一位數的除法筆算後,教材在第18頁安排了學生通過討論交流,總結計算方法的場景,雖然教材沒出給出完整的計演算法則的文本,但是通過學生的對話了突出了計算的基本步驟和要點。
在教學中,應重視對算理和計算規律的探求,培養學生的數學交流能力。首先,應充分利用學生已掌握的除法口算的經驗,引導學生探索筆算除法的算理和演算法,結合一定的直觀操作活動,使學生理解算理。並通過讓學生說一說每一個結果的含義及計算方法,溝通算理和演算法的聯系。再讓學生說一說計算的程序,養成一種有序地操作和思考的習慣,並能自主概括出筆算除法的計算要點。其次,應給學生創造一個寬松的表達環境,先讓學生在思考每個例題時,輕聲地說出自己的思考過程;再讓學生在小組(或與同桌)內說自己的思考過程;之後請能夠清晰地、有條理地表達自己的思路的學生在班上交流,提供表達的範例。通過有層次地說過程、說算理,使學生自主歸納出口算或筆算除法的基本方法,同時學會用簡潔的語言表述自己的思考過程,培養學生的數學交流能力。
三、復式統計表
根據《義務教育數學課程標准(2011版)》的要求,統計知識的教學整體後移,將原來安排在二年級下冊的復式統計表移至本冊教學,引導學生進一步體驗統計的方法和意義。尤其是藉助復式統計表的學習,進一步體會數據收集與整理的必要性以及數據分析方法的多樣性,體會數據中蘊含的豐富信息及其應用價值。本單元教學內容的編排,將數據分析觀念的培養貫穿於教學過程的各個環節。例如,例1,首先提出活動任務「要知道本班同學最喜歡的活動情況」——需要進行調查,獲取數據;接著讓學生用以前學習過的知識(單式統計表)來呈現數據,討論兩個統計表的共同點,發現還有更簡潔的形式——合成一個表,形成復式統計表;最後通過回答問題,讓學生感受復式統計表的優越性——表中包含的信息內涵更豐富;可直接看出男、女生每一項活動喜歡的人數,更便於比較;並可從不同的角度去解讀或分析問題。以上三個環節環環相扣,層層遞進,讓學生完整地經歷統計分析的全過程,經歷「復式統計表」產生的過程並體會其必要性,有效地發展學生的數據分析觀念。
盡管一、二年級時,學生已有過數據收集、整理、分析的經歷,但是,統計方法和意義的體驗、數據分析觀念的發展不是一蹴而就,需要在多次的經歷中不斷積淀,逐步內化。因此,本單元教學時,切不可單純地將復式統計表的認識和填寫作為唯一目標,而應以更寬廣的視角來審視與設計教學的過程。在學生應用已有的知識解決問題的基礎上,引導學生從解決問題的角度,發現單式統計表存在的局限性,自主「創造」出功能更強的復式統計表,體會復式統計表的優越性,體驗數據整理方法的多樣性。最後,教師還要引導學生通過對復式統計表的多角度解讀,獲得對數據分析方法的切身體驗,體會數據中包含的豐富信息。通過以上教學活動,讓學生親身經歷、主動探究的過程,有利於學生進一步體驗統計方法和意義。
四、兩位數乘兩位數
本單元包括口算乘法、兩位數乘兩位數的筆算乘法及運用連乘、連除兩步計算解決問題。與實驗教材相比,主要有以下幾個方面的變化。
1.藉助幾何直觀,幫助學生理解算理,掌握演算法
在教學兩位數乘一位數口算、兩位數乘兩位數(不進位)的計算方法時,教材安排了通過擺方塊學習口算兩位數乘一位數,利用點子圖探索兩位數乘兩位數的演算法。藉助直觀手段(方塊、點子圖)與算式相對應,數形結合,引導學生親歷建構兩位數乘一位數口算、兩位數乘兩位數數學模型的過程,不僅能夠幫助學生理解算理,掌握演算法;而且為學生提供了數學思考、傾聽、交流的機會,培養學生的數感和推理能力。
教學時,要留有充裕的時間,放手讓學生嘗試、探討兩位數乘兩位數的筆算方法。在自主探索的基礎上,適時組織討論交流,以完善學生對計算過程與算理的理解。應為學生提供充分的從事數學活動的機會,讓學生主動探索計算方法。例如,在探索兩位數乘兩位數(不進位)筆算乘法的算理時,首先要讓學生嘗試用已有的知識解決新的問題,並要求學生用點子圖把自己的方法表示出來,讓學生經歷用圖示表徵解釋演算法的過程;然後,再交流展示多種解決問題的方法,並通過學生的匯報使學生明確如何劃分點子圖、算式表徵了哪種計算方法,溝通圖形表徵、算式表徵與計算方法之間的聯系;最後,在理解豎式計算的算理時,可以讓學生再次利用點子圖,表示出豎式計算中每一步的結果,進而更好地理解其含義,掌握好演算法。藉助點子圖,在加深學生對計算方法理解的同時,使學生逐步學會藉助幾何直觀去解決問題,去表達和交流,有效地促進學生的全面發展。
2.注重運算規律的探索,培養數學思維能力
第一,有些計算的演算法是一致或相似的,教材通過例題和練習的設計啟發學生體會這些題目在演算法上的一致性,促進計算方法的有效遷移。例如,口算乘法例1中,在學生學習了15×3
的口算方法後,接著呈現150×3,讓學生體會這兩道口算之間的聯系和區別,利用舊知探究幾百幾十乘一位數的口算方法。
第二,練習中也設計了一類計算題(如練習十的第9題、練習十一的第10題),讓學生通過一組題的計算,發現其中蘊含的計算規律,再直接寫出其他各題的得數。讓學生經歷「猜想——計算——驗證」的探究過程,為積累探索數學規律的活動經驗提供機會。這樣的練習既可提高學生的學習興趣,又能滲透數學思想方法,培養學生的數學思維能力。
五、面積
本單元的主要學習內容包括四部分:面積和面積單位,長方形、正方形的面積計算,面積單位之間的進率,用所學的知識解決簡單的實際問題。與實驗教材相比,主要有以下幾個方面的變化。
1.關注學生對面積概念的真正理解
教材在修訂過程中刪去了面積的定義,其目的是避免學生死記硬背,也避免教師將功夫用在指導學生敘述面積的定義上,而忽視了學生對面積含義的真正理解。從讓學生觀察身邊熟悉的一些物體(黑板和國旗)的表面入手,明確「面」的概念;然後讓學生通過觀察比較兩個面的大小,進而形成對「面」的大小的直觀感受。在此基礎上,教材採用描述的方式,藉助具體事例說明「面積」的概念,並讓學生依此說出其他一些物體表面的面積。
2.注重對面積概念認識的全面性
由於學生常常誤認為只有向上擺放的「面」才有面積,因此教材在例1下面增加了「做一做」中,要求學生摸摸字典的封面和側面,並比較這兩個面的面積大小,使學生認識到側面的大小就是側面的面積。為避免學生一提到面積就想到長方形、正方形的面積,教材在練習十四中增加了不規則圖形面積的比較,包括線段圍成的圖形和曲線圍成的圖形,其目的是突出面積概念的本質,讓學生更全面地理解面積概念。
教師應結合具體教學內容,讓學生不斷感悟度量的本質,發展度量的意識。在教學中,可以從以下幾方面加以落實。一是,製造認知沖突,使學生感受學習「面積單位」的必要性;二是,藉助學生身邊熟悉的事物,使學生建立面積單位的表象;三是,讓學生經歷用面積單位度量面積的過程,體驗單位的價值;四是,梳理面積單位,形成結構化認識;五是,讓學生結合實際選擇和運用合適的面積單位解決問題。另外,在學生經歷用面積單位度量長方形面積的基礎上,應溝通長方形的長、寬與每行面積單位個數和行數之間的對應關系,適時進行長方形面積公式的抽象概括,幫助學生深入理解面積公式。
六、年、月、日
本單元主要包括:1.認識年、月、日,了解它們之間的關系;知道平年、閏年,了解24時計時法,會用24時計時法表示時刻;初步理解時間和時刻的意義,會計算簡單的經過時間。在編排時,仍然注意精心選取和學生生活聯系密切的素材,讓學生直觀地感受到了時間與人們的生活密不可分,對學生本單元的學習起到有效的支撐和促進作用。並注意為學生搭建自主學習、主動建構知識的平台,為學生提供較為充分的探究和思考的空間。與實驗教材相比,加強幾何直觀,幫助學生理解抽象的概念。24時計時法比較抽象,教材藉助多種直觀方法幫助學生理解。在實驗教材在鍾面上標出內、外圈數呈現24時計時法的基礎上,增加了「時間軸」,將一日經過的時間展開,在時間軸上對比給出一日內12時計時法和24時計時法所表示的整點的時間。將抽象的、不斷流逝的時間與直觀的數軸建立起聯系,將「時刻」與數軸上的點建立聯系,藉助幾何直觀進一步幫助學生理解抽象的24時計時法。
在教學中,應關注學生的生活經驗,讓學生在生動具體的情境中感受時間,並採用多種途徑引導學生探究、理解知識,發展應用能力。應當通過創設一些現實性情境,布置一些實踐性任務或具有挑戰性的問題,多途徑地引導學生經歷觀察、記錄、猜想、交流、推理等學習過程,使學生在自主建構知識、積累活動經驗的同時,提升思維水平,發展應用能力。還可以設計一些觀察、記錄、歸納等學習活動,也可以嘗試解決以實際問題為任務驅動,以便更好地挖掘教材資源,幫助學生積累解決問題的經驗。
由於學生平時很少使用24時計時法,因此在用24時計時法表示下午幾時或晚上幾時時,學生往往感到不太習慣。教學時,應使用鍾表模型等教具或學具,加強對鍾面的觀察和操作,引導學生觀察一日時針正好走兩圈,體會鍾面數字、時間及圈數之間的關系,讓學生積累豐富的表象;並適時出示時間軸,教學時可給出12時計時法表示的時刻,讓學生在標出相應的24時計時法表示的時刻,藉助幾何直觀幫助學生理解24時計時法。在教學計算簡單的經過時間時,可以讓學生通過觀察鍾面和直觀演示,從出發時刻開始,讓指針轉動到到達時刻,把直觀觀察和線路圖對應起來,並口算得出經過的時間;還可以出示時間軸,讓學生在上面標出出發時刻和到達時刻,將抽象的時刻與直線上的點對應起來,將「經過時間」與兩點間的距離建立聯系,幫助學生思考。
七、小數的初步認識
本單元的學習內容主要包括認識小數和簡單的小數加、減法兩部分,與實驗教材相比,降低了要求,小數的含義、大小比較和小數加、減法,僅限於一位小數。在實驗教材以學生熟悉的日常事物和活動為場景,通過人民幣、米制系統這些具體的量幫助學生認識小數的基礎上,增加了面積、數尺或數軸這樣的直觀、半直觀模型來幫助學生進一步認識小數。
本單元是小數的初步認識教學應把握以下兩點:一是本單元是「小數的初步認識」,不要把小數作為一個抽象的「數」來研究,不要出現數位、計數單位等概念,應結合具體的「量」和面積、數軸等直觀模型來認識;二是小數的大小比較和小數加、減法,僅限於一位小數。
八、數學廣角——搭配(二)
學生在二年級上冊「數學廣角」的學習中已經接觸了簡單的排列和組合內容,在此基礎上,本單元內容難度稍有提升,不僅數據加大了,而且問題情況也更加復雜,同時給出了更簡潔、更抽象的表達方式,進一步培養學生有序、全面思考問題的能力。
例1,要求學生用4個數字(含0)組成沒有重復數字的兩位數,教學稍復雜的排列問題。與二年級上冊的例1相比,不僅元素要(排列的數字)多了1個,而且增加的是0這個特殊元素。例2,通過搭配服裝的問題,教學分步乘法計算原理。例3,要求找出4支球隊的比賽(每兩個隊賽一場)次數,教學組合問題。與二年級上冊的例2相比,素材不同,且多了一個元素。在二年級時,學生主要通過具體操作、觀察、猜測等活動初步感受排列組合的思想和方法。本單元教學的重點應放在引導學生用更簡潔、更抽象的方式把思考的過程和結果表達出來,培養學生有序、全面思考問題的能力。
排列和組合是很抽象的數學知識,教學中,需要通過多種活動把這些抽象的知識直觀化、具體化,並鼓勵學生用自己喜歡的方式表達思維過程和結果。既要指導學生根據實際問題採取枚舉、連線等形式有序地、不重不漏地找出事物的排列數和組合數,還要注意不要拔高要求。只要求學生用圖示的方式把所有的排列或組合情況列舉出來(即有哪些排列或組合)即可,不要求抽象地計算出一共有多少種排列數或組合數,諸如排列、組合、分類計數原理、分步計數原理等名詞,不必出現。
F. 三年級下冊數學書里的年,月,日.寫十條知識
初二數學下知識點總結
平移與旋轉
旋轉
旋轉的定義:
在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動叫做旋轉。
旋轉的性質:
旋轉後得到的圖形與原圖形之間有:對應點到旋轉中心的距離相等,旋轉角相等。
中心對稱
中心對稱的定義:
如果一個圖形繞某一點旋轉180度後能與另一個圖形重合,那麼這兩個圖形叫做中心對稱。
中心對稱圖形的定義:
如果一個圖形繞一點旋轉180度後能與自身重合,這個圖形叫做中心對稱圖形。
中心對稱的性質:
在中心對稱的兩個圖形中,連結對稱點的線段都經過對稱中心,並且被對稱中心平分。
軸對稱
軸對稱的定義:
如果一個圖形沿一條直線折疊後,直線兩旁的部分能夠互相重合,那麼這個圖形叫做軸對
稱圖形,這條直線叫做對稱軸。
軸對稱圖形的性質:
①角的平分線上的點到這個角的兩邊的距離相等。
②線段垂直平分線上的點到這條線段兩個端點的距離相等。
③等腰三角形的「三線合一」。
3.軸對稱的性質:對應點所連的線段被對稱軸垂直平分,對應線段/對應角相等。
圖形變換
圖形變換的定義:圖形的平移、旋轉、和軸對稱統稱為圖形變換。
函數及其相關概念
1、變數與常量
在某一變化過程中,可以取不同數值的量叫做變數,數值保持不變的量叫做常量。
一般地,在某一變化過程中有兩個變數x與y,如果對於x的每一個值,y都有唯一確定的值與它對應,那麼就說x是自變數,y是x的函數。
2、函數解析式
用來表示函數關系的數學式子叫做函數解析式或函數關系式。
使函數有意義的自變數的取值的全體,叫做自變數的取值范圍。
3、函數的三種表示法及其優缺點
(1)解析法
兩個變數間的函數關系,有時可以用一個含有這兩個變數及數字運算符號的等式表示,這種表示法叫做解析法。
(2)列表法
把自變數x的一系列值和函數y的對應值列成一個表來表示函數關系,這種表示法叫做列表法。
(3)圖像法
用圖像表示函數關系的方法叫做圖像法。
4、由函數解析式畫其圖像的一般步驟
(1)列表:列表給出自變數與函數的一些對應值
(2)描點:以表中每對對應值為坐標,在坐標平面內描出相應的點
(3)連線:按照自變數由小到大的順序,把所描各點用平滑的曲線連接起來。
正比例函數和一次函數
1、正比例函數和一次函數的概念
一般地,如果(k,b是常數,k0),那麼y叫做x的一次函數。
特別地,當一次函數中的b為0時,(k為常數,k0)。這時,y叫做x的正比例函數。
2、一次函數的圖像
所有一次函數的圖像都是一條直線
3、一次函數、正比例函數圖像的主要特徵:
一次函數的圖像是經過點(0,b)的直線;正比例函數的圖像是經過原點(0,0)的直線。(如下圖)
4.
正比例函數的性質
一般地,正比例函數有下列性質:
(1)當k>0時,圖像經過第一、三象限,y隨x的增大而增大;
(2)當k<0時,圖像經過第二、四象限,y隨x的增大而減小。
5、一次函數的性質
一般地,一次函數有下列性質:
(1)當k>0時,y隨x的增大而增大
(2)當k<0時,y隨x的增大而減小
6、正比例函數和一次函數解析式的確定
確定一個正比例函數,就是要確定正比例函數定義式(k0)中的常數k。確定一個一次函數,需要確定一次函數定義式(k0)中的常數k和b。解這類問題的一般方法是待定系數法。
G. 小學人教版三年級下《年月日》中運用了哪些「數學思想方法」
年、月、日這部分內容是學生對時間單位學習的繼續和延伸,由於這幾個單位都是比較抽象的時間單位,所以教材在編排上非常注重選擇和學生生活密切聯系的素材進行教學。教材首先給學生呈現了四幅主題圖,展現了一些十分有意義的日子,比如中華人民共和國建國日、北京申奧成功的日子、植樹節、兒童節等,利用這些素材使學生感受到數學與生活的聯系,同時揭示出將要認識的時間單位。接著教材通過例1給學生呈現了一張年歷,著重引導學生觀察年歷,回答一些相關的問題,在這個過程中,有意識地讓學生溝通年、月、日之間的關系。另外教材還特別安排「拳頭記憶法」和「歌訣記憶法」幫助學生記憶每月的天數。教材例2給學生分別出示了2004年2月和2005年2月兩長月歷卡,引導學生觀察,發現天數是不同的,這樣引出平年和閏年的知識,然後再利用「做一做」中呈現的1993年至2004年的二月份月歷卡,通過引導學生觀察、思考,說明閏年的判斷方法。
http://ja.3e.net/sx7/Lesson_86624.html
H. 人教版三年級數學下冊《年月日》屬於哪個知識節點
用相差的天數除以7取余數,然後往後面數,比如這道題,相差30天,除以7餘數為2,那麼10月4日的星期是9月4日後面兩天,所以是星期6.。