『壹』 九年級上冊數學第一章知識框架
一、梳理知識:
1、全等三角形
(1)定義: 能夠完全 的三角形是全等三角形。
(2)性質:全等三角形的 、 相等。
(3)判定:"SAS"、 、 、 、 。
2、等腰三角形
(1)定義:有兩條 的三角形是等腰三角形。
(2)性質:①等腰三角形的 相等。("等邊對等角")
②等腰三角形的頂角平分線、 、 互相重合。( )
③等腰三角形是 圖形。
(3)判定:①定義 ②" "
(4)等邊三角形 定義: 的三角形是等邊三角形。
性質:①三角都等於 ②具有等腰三角形的一切性質。
判定:①定義 ②有一個角 是等邊三角形。
3、直角三角形
(1)定義:有一個角是 的三角形是直角三角形。
(2)性質:①"勾股定理" 。
②直角三角形兩銳角 。
③直角三角形斜邊上的中線等於 。
④在直角三角形中,30°角所對直角邊等於 。
(3)判定:①定義 ②兩銳角 的三角形是直角三角形
③"勾股定理逆定理" 。
4、角平分線
(1)定義: 。
(2)性質:①角平分線上的點 相等。
②三角形的三條角平分線 ,且到 相等。
(3)判定:到角的兩邊 的點,在這個角的平分線上。
(4)角平分線的作法:
5、線段的垂直平分線
(1)定義: 一條線段的 叫線段的垂直平分線。
(2)性質:①線段垂直平分線上一點 相等。
②三角形三邊的垂直平分線 ,且到 相等。
(3)判定:到一條線段兩個端點 的點,在這條線段的垂直平分線上。
(4)線段的垂直平分線的作法:
6、命題:判斷一件事的句子叫命題。命題有 與 兩部分。
互逆命題:在兩個命題中,如果一個命題的 是另一個命題的
,那麼這兩個命題成為互逆命題,其中一個命題稱為另一個命題的 。
7、逆定理:如果一個定理的逆命題是真命題,那麼這個逆命題就叫原定理的逆定理.
二、典型例題:
一、選擇題
1、到△ABC的三條邊距離相等的點是△ABC的( )
A.三邊中線的交點 B.三條角平分線的交點C.三邊上高的交點 D.三邊中垂線的交點
2、已知等腰三角形的兩邊長分別為4㎝和2㎝,則其周長是( )
A. 6㎝ B. 10㎝ C. 10㎝或8㎝ D. 8㎝
3、如圖,從等腰△ABC底邊BC上任意一點分別作兩腰的平行線DE、DF,分別交AC、AB於點E、F,則□AFDE的周長等於這個等腰三角形的( )
A. 周長 B. 周長的一半
C. 一條腰長的2倍 D. 一條腰長
嶗山八中九年級數學復習課導學案
課題
證明(二)
課型
復習課
課時
1
復習目標
1、 能准確的找出兩個三角形的等量關系,證明兩個三角形全等;
2、 靈活運用各性質解決實際問題。
重點、難點、考點
1、 等腰三角形、等邊三角形的性質和判定
2、 理解題意,把握題目中的每個量
3、 線段垂直平分線的做法,角平分線的做法利用等腰三角形、線段垂直平分線、角平分線的性質靈活解題
教法
分層設計,先寫後說,互動交流
學法指導
一、課前准備
1、等腰三角形的性質:邊 ;角 ;敘述三線合一的內容 。
2、等邊三角形的性質:邊 ;角 。
3、判定等腰三角形的方法有:邊 角 。
4、判定等邊三角形的方法有:邊 角 。
5、線段垂直平分線的性質定理:
逆定理:
已知線段AB,用直尺和圓規作出它的垂直平分線:
三角形的垂直平分線性質:
6、角的性質定理:
逆定理:
已知角ABC,用直尺和圓規作出它的角平分線:
三角形的角平分線性質:
7、三角形全等的判定方法有 。
8、說出「等腰三角形的兩底角相等」的逆命題是 。
學習困惑記錄
二、課堂復習
一、等腰三角形
1、已知,等腰三角形的一條邊長等於,另一條邊長等於,則此等腰三角形的周長是( )A.B. C. D.或
2.等腰三角形的底角為15°,腰上的高為16,那麼腰長為__________
3、等腰三角形的一個角是80度,則它的另兩個角是
4、(選作)△ABC中,D,E分別是AC,AB上的點,BD與CE交於點O,給出下列四個條件:
①∠EBO=∠DCO ②∠BEO=∠CDO ③BE=CD ④OB=OC
[1]上述四個條件中,哪兩個條件可以判定△ABC是等腰三角形(用序號寫出)
[2]選擇第[1]小題中的一種情形,證明△ABC是等腰三角
二、等邊三角形
1、如圖:等邊三角形ABC中,D為AC的中點,E為BC延長線上一點,且DB=DE,若△ABC的周長為12,則△DCE的周長為___________.
三、垂直平分線
1、如圖1,在△ABC中,已知AC=27,AB的垂直平分線交AB於點D,交AC於點E,△BCE的周長等於50,求BC的長.
2、(選作)如圖:△ABC中,AB=AC,∠BAC=1200,EF垂直平分AB,EF=2,求AB與BC的長。
四、角平分線
1、如圖,在△ABC中,∠C=90°,∠A的平分線交BC於E,DE⊥AB於D,BC=8,AC=6,AB=10,則△BDE的周長為_________。
2、.如左下圖,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB於D,如果AC=3 cm,那麼AE+DE等於
A.2 cm B.3 cm C.4 cm D.5 cm
3.如右圖,已知BE⊥AC於E,CF⊥AB於F,BE、CF相交於點D,若BD=CD.求證:AD平分∠BAC.
五、三角形全等
1、如圖:已知P,O是線段CD垂直平分線上的點,A,B分別是射線OC,OD上的點,且PC⊥OA,PD⊥OB,垂足分別是C,D.
求證:[1]OC=OD
[2]OP平分∠AOB
2、.如圖:在△ABC中,
AD,CE分別是△ABC的高,
請你再加一個___________
條件
即可使△AEH≌△CEB。
六、命題
1. 命題「直角三角形斜邊上的中線等於斜邊的一半」,其逆命題是
_____________________________________.它是一個__________命題。
2.下列各語句中,不是真命題的是
A.直角都相等
B.等角的補角相等
C.點P在角的平分線上
D.對頂角相等
3、.下列命題中是真命題的是
A.有兩角及其中一角的平分線對應相等的兩個三角形全等
B.相等的角是對頂角
C.餘角相等的角互余
D.兩直線被第三條直線所截,截得的同位角相等
七、綜合
小軍和小強互相編數學題考察對方:
(1)小軍編題:將含有45度角的的直角三角板和直尺如圖擺放在桌子上,然後分別過A、B兩個頂點向直尺作了兩條垂線段AD,BE。
問題[1]:你能發現並證明這個圖形中的全等三角形嗎?
[2]:你能發現並證明線段AD,BE,DE之間的關系嗎?
小強順利的做出了解答,你也來試試吧!
(2)小強借題發揮,將直尺位置稍作改變,以相同的問題問小軍,你能幫助小軍做出正確解答嗎?
(3)在小強和小軍所編的題目中用到了你所學過的哪些定理?
隨時糾錯
三、小結反饋
1、在三角形內部,有一個點P到三角形三個頂點的距離相等,那麼P點一定是( )
A.這個三角形的三條邊的垂直平分線的交點。
B.這個三角形三條中線的交點。
C.這個三角形三角角平分線的交點
D.這個三角形三條高的交點
如圖,P是∠AOB平分線上的一點,PC⊥OA,PD⊥OB,垂足分別是C、D
求證:①OC=OD
②OP是CD的垂直平分線
說明:第②問可以一題多解。一是可以利用等腰三角形三線合一,二是因為PC=PD,OC=OD,所以得以證明(根據的是兩點確定一條直線)
『貳』 數學九年級上冊知識點歸納總結
1二次根式:形如式子為二次根式;
性質:是一個非負數;
2二次根式的乘除:
3二次根式的加減:二次根式加減時,先將二次根式華為最簡二次根式,再將被開方數相同的二次根式進行合並。
4海倫-秦九韶公式: ,S是三角形的面積,p為 。
1一元二次方程:等號兩邊都是整式,且只有一個未知數,未知數的最高次是2的方程。
2一元二次方程的解法
配方法:將方程的一邊配成完全平方式,然後兩邊開方;
因式分解法:左邊是兩個因式的乘積,右邊為零。
3一元二次方程在實際問題中的應用
4韋達定理:設是方程的兩個根,那麼有
1:一個圖形繞某一點轉動一個角度的圖形變換
性質:對應點到旋轉中心的距離相等;
對應點與旋轉中心所連的線段的夾角等於旋轉角
旋轉前後的圖形全等。
2中心對稱:一個圖形繞一個點旋轉180度,和另一個圖形重合,則兩個圖形關於這個點中心對稱;
中心對稱圖形:一個圖形繞某一點旋轉180度後得到的圖形能夠和原來的圖形重合,則說這個圖形是中心對稱圖形;
3關於原點對稱的點的坐標
1圓、圓心、半徑、直徑、圓弧、弦、半圓的定義
2垂直於弦的直徑
圓是軸對稱圖形,任何一條直徑所在的直線都是它的對稱軸;
垂直於弦的直徑平分弦,並且平方弦所對的兩條弧;
平分弦的直徑垂直弦,並且平分弦所對的兩條弧。
3弧、弦、圓心角
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等。
4圓周角
在同圓或等圓中,同弧或等弧所對的圓周角相等,都等於這條弧所對的圓心角的一半;
半圓(或直徑)所對的圓周角是直角,90度的圓周角所對的弦是直徑。
5點和圓的位置關系
點在圓外d>r
點在圓上d=r
點在圓內d<r
定理:不在同一條直線上的三個點確定一個圓。
6直線和圓的位置關系
相交d<r
相切d=r
相離d>r
切線的性質定理:圓的切線垂直於過切點的半徑;
切線的判定定理:經過圓的外端並且垂直於這條半徑的直線是圓的切線;
切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,這一點和圓心的連線平分兩條切線的夾角。
三角形的內切圓:和三角形各邊都相切的圓為它的內切圓,圓心是三角形的三條角平分線的交點,為三角形的內心。
7圓和圓的位置關系
外離d>R+r
外切d=R+r
相交R-r<d<R+r
內切d=R-r
內含d<R-r
8正多邊形和圓
正多邊形的中心:外接圓的圓心
正多邊形的半徑:外接圓的半徑
正多邊形的中心角:沒邊所對的圓心角
正多邊形的邊心距:中心到一邊的距離
9弧長和扇形面積
弧長:
扇形面積:
10圓錐的側面積和全面積
側面積:
全面積:
11相交弦定理、切割線定理
1概率意義:在大量重復試驗中,事件A發生的頻率 穩定在某個常數p附近,則常數p叫做事
件A的概率。
2用列舉法求概率
一般的,在一次試驗中,有n中可能的結果,並且它們發生的概率相等,事件A包含其中的m中結果,那麼事件A發生的概率就是p(A)=
3用頻率去估計概率
1二次函數 =
a>0,開口向上;a<0,開口向下;
對稱軸: ;
頂點坐標: ;
圖像的平移可以參照頂點的平移。
2用函數觀點看一元二次方程
3二次函數與實際問題
1圖形的相似
相似多邊形的對應邊的比值相等,對應角相等;
兩個多邊形的對應角相等,對應邊的比值也相等,那麼這兩個多邊形相似;
相似比:相似多邊形對應邊的比值。
2相似三角形
判定:
平行於三角形一邊的直線和其它兩邊相交,所構成的三角形和原三角形相似;
如果兩個三角形的兩組對應邊的比相等,並且相應的夾角相等,那麼兩個三角形相似;
如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那麼兩個三角形相似。
3相似三角形的周長和面積
相似三角形(多邊形)的周長的比等於相似比;
相似三角形(多邊形)的面積的比等於相似比的平方。
4位似
位似圖形:兩個多邊形相似,而且對應頂點的連線相交於一點,對應邊互相平行,這樣的兩個圖形叫位似圖形,相交的點叫位似中心。
1銳角三角函數:正弦、餘弦、正切;
2解直角三角形
1投影:平行投影、中心投影、正投影
2三視圖:俯視圖、主視圖、左視圖。
3三視圖的畫法
1本單元教學的主要內容.
一元二次方程概念;解一元二次方程的方法;一元二次方程應用題.
2本單元在教材中的地位與作用.
一元二次方程是在學習《一元一次方程》、《二元一次方程》、分式方程等基礎之上學習的,它也是一種數學建模的方法.學好一元二次方程是學好二次函數不可或缺的,是學好高中數學的奠基工程.應該說,一元二次方程是本書的重點內容.
了解一元二次方程及有關概念;掌握通過配方法、公式法、因式分解法降次──解一元二次方程;掌握依據實際問題建立一元二次方程的數學模型的方法;應用熟練掌握以上知識解決問題.
通過豐富的實例,讓學生合作探討,老師點評分析,建立數學模型.根據數學模型恰如其分地給出一元二次方程的概念.結合八冊上整式中的有關概念介紹一元二次方程的派生概念,如二次項等.通過掌握缺一次項的一元二次方程的解法──直接開方法,導入用配方法解一元二次方程,又通過大量的練習鞏固配方法解一元二次方程.求根公式的條件:b2-4ac>0,b2-4ac=0,b2-4ac<0.通過復習八年級上冊《整式》的第5節因式分解進行知識遷移,解決用因式分解法解一元二次方程,並用練習鞏固它.提出問題、分析問題,建立一元二次方程的數學模型,並用該模型解決實際問題.
3情感、態度與價值觀
經歷由事實問題中抽象出一元二次方程等有關概念的過程,使同學們體會到通過一元二次方程也是刻畫現實世界中的數量關系的一個有效數學模型;經
歷用配方法、公式法、分解因式法解一元一次方程的過程,使同學們體會到轉化等數學思想;經歷設置豐富的問題情景,使學生體會到建立數學模型解決
實際問題的過程,從而更好地理解方程的意義和作用,激發學生的學習興趣.
1一元二次方程及其它有關的概念.
2用配方法、公式法、因式分解法降次──解一元二次方程.
3用實際問題建立一元二次方程的數學模型,並解決這個問題.
1一元二次方程配方法解題.
2用公式法解一元二次方程時的討論.
3建立一元二次方程實際問題的數學模型;方程解與實際問題解的區別.
1分析實際問題如何建立一元二次方程的數學模型.
2用配方法解一元二次方程的步驟.
3解一元二次方程公式法的推導.
本單元教學時間約需16課時,具體分配如下:
221一元二次方程2課時
222降次──解一元二次方程7課時
223實際問題與一元二次方程5課時
發現一元二次方程根與系數的關系2課時
1二次根式
式子叫做二次根式,二次根式必須滿足:含有二次根號「」;被開方數a必須是非負數。
2最簡二次根式
若二次根式滿足:被開方數的因數是整數,因式是整式;被開方數中不含能開得盡方的因數或因式,這樣的二次根式叫做最簡二次根式。
化二次根式為最簡二次根式的方法和步驟:
如果被開方數是分數(包括小數)或分式,先利用商的算數平方根的性質把它寫成分式的形式,然後利用分母有理化進行化簡。如果被開方數是整數或整式,先將他們分解因數或因式,然後把能開得盡方的因數或因式開出來。
3同類二次根式
幾個二次根式化成最簡二次根式以後,如果被開方數相同,這幾個二次根式叫做同類二次根式。
4二次根式的性質
5二次根式混合運算
二次根式的混合運算與實數中的運算順序一樣,先乘方,再乘除,最後加減,有括弧的先算括弧里的(或先去括弧)。
1一元二次方程
含有一個未知數,並且未知數的最高次數是2的整式方程叫做一元二次方程。
2一元二次方程的一般形式
它的特徵是:等式左邊十一個關於未知數x的二次多項式,等式右邊是零,其中叫做二次項,a叫做二次項系數;bx叫做一次項,b叫做一次項系數;c叫做常數項。
一元二次方程的解法
1直接開平方法
利用平方根的定義直接開平方求一元二次方程的解的方法叫做直接開平方法。直接開平方法適用於解形如的一元二次方程。根據平方根的定義可知,是b的平方根,當時,,,當b<0時,方程沒有實數根。
2配方法
配方法是一種重要的數學方法,它不僅在解一元二次方程上有所應用,而且在數學的其他領域也有著廣泛的應用。配方法的理論根據是完全平方公式,把公式中的a看做未知數x,並用x代替,則有。
3公式法
公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程的求根公式:
4因式分解法
因式分解法就是利用因式分解的手段,求出方程的解的方法,這種方法簡單易行,是解一元二次方程最常用的方法。
一元二次方程根的判別式
根的判別式
一元二次方程中,叫做一元二次方程的根的判別式,通常用「」來表示,即
一元二次方程根與系數的關系
如果方程的兩個實數根是,那麼,。也就是說,對於任何一個有實數根的一元二次方程,兩根之和等於方程的一次項系數除以二次項系數所得的商的相反數;兩根之積等於常數項除以二次項系數所得的商。
1定義
把一個圖形繞某一點O轉動一個角度的圖形變換叫做旋轉,其中O叫做旋轉中心,轉動的角叫做旋轉角。
2性質
對應點到旋轉中心的距離相等。對應點與旋轉中心所連線段的夾角等於旋轉角。
1定義
把一個圖形繞著某一個點旋轉180°,如果旋轉後的圖形能夠和原來的圖形互相重合,那麼這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。
2性質
關於中心對稱的兩個圖形是全等形。關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分。關於中心對稱的兩個圖形,對應線段平行(或在同一直線上)且相等。
3判定
如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱。
4中心對稱圖形
把一個圖形繞某一個點旋轉180°,如果旋轉後的圖形能夠和原來的圖形互相重合,那麼這個圖形叫做中心對稱圖形,這個店就是它的對稱中心。
考點五、坐標系中對稱點的特徵(3分)
1關於原點對稱的點的特徵
兩個點關於原點對稱時,它們的坐標的符號相反,即點P(x,y)關於原點的對稱點為P』(-x,-y)
2關於x軸對稱的點的特徵
兩個點關於x軸對稱時,它們的坐標中,x相等,y的符號相反,即點P(x,y)關於x軸的對稱點為P』(x,-y)
3關於y軸對稱的點的特徵
兩個點關於y軸對稱時,它們的坐標中,y相等,x的符號相反,即點P(x,y)關於y軸的對稱點為P』(-x,y)
1圓的定義
在一個個平面內,線段OA繞它固定的一個端點O旋轉一周,另一個端點A隨之旋轉所形成的圖形叫做圓,固定的端點O叫做圓心,線段OA叫做半徑。
2圓的幾何表示
以點O為圓心的圓記作「⊙O」,讀作「圓O」
弦、弧等與圓有關的定義
(1)弦
連接圓上任意兩點的線段叫做弦。(如圖中的AB)
(2)直徑
經過圓心的弦叫做直徑。(如途中的CD)
直徑等於半徑的2倍。
(3)半圓
圓的任意一條直徑的兩個端點分圓成兩條弧,每一條弧都叫做半圓。
(4)弧、優弧、劣弧
圓上任意兩點間的部分叫做圓弧,簡稱弧。
弧用符號「⌒」表示,以A,B為端點的弧記作「」,讀作「圓弧AB」或「弧AB」。
大於半圓的弧叫做優弧(多用三個字母表示);小於半圓的弧叫做劣弧(多用兩個字母表示)
垂徑定理及其推論
垂徑定理:垂直於弦的直徑平分這條弦,並且平分弦所對的弧。
推論1:平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧。弦的垂直平分線經過圓心,並且平分弦所對的兩條弧。平分弦所對的一條弧的直徑垂直平分弦,並且平分弦所對的另一條弧。
推論2:圓的兩條平行弦所夾的弧相等。
垂徑定理及其推論可概括為:
過圓心
垂直於弦
直徑平分弦知二推三,平分弦所對的優弧,平分弦所對的劣弧.
1圓的軸對稱性
圓是軸對稱圖形,經過圓心的每一條直線都是它的對稱軸。
2圓的中心對稱性
圓是以圓心為對稱中心的中心對稱圖形。
弧、弦、弦心距、圓心角之間的關系定理
1圓心角
頂點在圓心的角叫做圓心角。
2弦心距
從圓心到弦的距離叫做弦心距。
3弧、弦、弦心距、圓心角之間的關系定理
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦想等,所對的弦的弦心距相等。
推論:在同圓或等圓中,如果兩個圓的圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那麼它們所對應的其餘各組量都分別相等。
圓周角定理及其推論
1圓周角
頂點在圓上,並且兩邊都和圓相交的角叫做圓周角。
2圓周角定理
一條弧所對的圓周角等於它所對的圓心角的一半。
推論1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。
推論2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。
推論3:如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形。
點和圓的位置關系
設⊙O的半徑是r,點P到圓心O的距離為d,則有:
d<r點P在⊙O內;
d=r點P在⊙O上;
d>r點P在⊙O外。
1過三點的圓
不在同一直線上的三個點確定一個圓。
2三角形的外接圓
經過三角形的三個頂點的圓叫做三角形的外接圓。
3三角形的外心
三角形的外接圓的圓心是三角形三條邊的垂直平分線的交點,它叫做這個三角形的外心。
4圓內接四邊形性質(四點共圓的判定條件)
圓內接四邊形對角互補。
先假設命題中的結論不成立,然後由此經過推理,引出矛盾,判定所做的假設不正確,從而得到原命題成立,這種證明方法叫做反證法。
直線與圓的位置關系
直線和圓有三種位置關系,具體如下:
相交:直線和圓有兩個公共點時,叫做直線和圓相交,這時直線叫做圓的割線,公共點叫做交點;相切:直線和圓有唯一公共點時,叫做直線和圓相切,這時直線叫做圓的切線,相離:直線和圓沒有公共點時,叫做直線和圓相離。
如果⊙O的半徑為r,圓心O到直線l的距離為d,那麼:
直線l與⊙O相交d<r;
直線l與⊙O相切d=r;
直線l與⊙O相離d>r;
1切線的判定定理
經過半徑的外端並且垂直於這條半徑的直線是圓的切線。
2切線的性質定理
圓的切線垂直於經過切點的半徑。
1切線長
在經過圓外一點的圓的切線上,這點和切點之間的線段的長叫做這點到圓的切線長。
2切線長定理
從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角。
三角形的內切圓
1三角形的內切圓
與三角形的各邊都相切的圓叫做三角形的內切圓。
2三角形的內心
三角形的內切圓的圓心是三角形的三條內角平分線的交點,它叫做三角形的內心。
1圓和圓的位置關系
如果兩個圓沒有公共點,那麼就說這兩個圓相離,相離分為外離和內含兩種。
如果兩個圓只有一個公共點,那麼就說這兩個圓相切,相切分為外切和內切兩種。
如果兩個圓有兩個公共點,那麼就說這兩個圓相交。
2圓心距
兩圓圓心的距離叫做兩圓的圓心距。
3圓和圓位置關系的性質與判定
設兩圓的半徑分別為R和r,圓心距為d,那麼
兩圓外離d>R+r
兩圓外切d=R+r
兩圓相交R-r<d<R+r(R≥r)
兩圓內切 d=R-r(R>r)
兩圓內含d<R-r(R>r)
4兩圓相切、相交的重要性質
如果兩圓相切,那麼切點一定在連心線上,它們是軸對稱圖形,對稱軸是兩圓的連心線;相交的兩個圓的連心線垂直平分兩圓的公共弦。
1正多邊形的定義
各邊相等,各角也相等的多邊形叫做正多邊形。
2正多邊形和圓的關系
只要把一個圓分成相等的一些弧,就可以做出這個圓的內接正多邊形,這個圓就是這個正多邊形的外接圓。
1正多邊形的中心
正多邊形的外接圓的圓心叫做這個正多邊形的中心。
2正多邊形的半徑
正多邊形的外接圓的半徑叫做這個正多邊形的半徑。
3正多邊形的邊心距
正多邊形的中心到正多邊形一邊的距離叫做這個正多邊形的邊心距。
4中心角
正邊形的每一邊所對的外接圓的圓心角叫做這個正多邊形的中心角。
1正多邊形的軸對稱性
正多邊形都是軸對稱圖形。一個正n邊形共有n條對稱軸,每條對稱軸都通過正n邊形的中心。
2正多邊形的中心對稱性
邊數為偶數的正多邊形是中心對稱圖形,它的對稱中心是正多邊形的中心。
3正多邊形的畫法
先用量角器或尺規等分圓,再做正多邊形。
1弧長公式
n°的圓心角所對的弧長l的計算公式為
2扇形面積公式
其中n是扇形的圓心角度數,R是扇形的半徑,l是扇形的弧長。
3圓錐的側面積
其中l是圓錐的母線長,r是圓錐的地面半徑。
補充:(此處為大綱要求外的知識,但對開發學生智力,改善學生數學思維模式有很大幫助)
1相交弦定理
⊙O中,弦AB與弦CD相交與點E,則AEBE=CEDE
2弦切角定理
弦切角:圓的切線與經過切點的弦所夾的角,叫做弦切角。
弦切角定理:弦切角等於弦與切線夾的弧所對的圓周角。
即:∠BAC=∠ADC
3切割線定理PL:PA為⊙O切線,PBC為⊙O割線,則
『叄』 初三數學基礎知識點有哪些
初三數學基礎知識點:
一、方程(組)與不等式(組)
1、各種方程(組)的解法要熟練掌握,方程(組)無解的意義是找不到等式成立的條件。
2、運用等式性質時,兩邊同除以一個數必須要注意不能為O的情況,還要關註解方程與方程組的基本思想。消元降次的主要陷阱在於消除了一個帶X公因式時回頭檢驗。
3、運用不等式的性質3時,容易忘記改不變號的方向而導致結果出錯。
4、關於一元二次方程的取值范圍的題目易忽視二次項系數不為0。
二、有理數
1、有理數的加法運算
同號兩數來相加,絕對值加不變號。
異號相加大減小,大數決定和符號。
互為相反數求和,結果是零須記好。
「大」減「小」是指絕對值的大小。
2、有理數的減法運算
減正等於加負,減負等於加正。
有理數的乘法運算符號法則。
同號得正異號負,一項為零積是零。
三、二次函數解析式的表示方法
1、一般式:y=ax2+bx+c(a,b,c為常數,a≠0),如:y=2x2+3x+4;
2、頂點式:y=a(x-h)2+k(a,h,k為常數,a≠0),如:y=2(x-5)2+3;
3、兩根式:y=a(x-x1)(x-x2)(a≠0,x1,x2是拋物線與x軸兩交點的橫坐標),如:y=2(x-1)(x+3)。
『肆』 九年級上冊數學書內容有哪些
九年級數學分為代數、幾何兩個部分。
代數內容有二次函數,統計初步二章;幾何內容有相似三角形、銳角三角比、圓與正多邊形三章。初三數學的學習,是以前兩年數學學習為基礎的,是對已學知識的加深、拓寬、綜合與延續,是初中數學學習的重點,也是中考考查的重點。
相信很多同學已經體會到這樣一件事,就是初一的數學比小學難,初二的數學比初一的數學更難,初三的數學已經有同學上課聽不懂,盯著黑板發呆的人不少。
初三數學是以前兩年的學習內容為基礎的,可以用來復習、鞏固相關的內容,同時新知識的學習常常由舊知識引入或要用到前面所學過的內容,甚至是已有知識的綜合、提高與延續。因此在學習中,要注意前後知識的聯系,以便達到鞏固與提高的目的。
其實,要學好初中數學,初一的時候一定要打好基礎,初二的時候成績要穩得住,初三復習階段需要多總結錯題,這樣中考才能考出理想的成績。
為了幫助學生學好初三數學,我給大家分享一份初三數學上冊的全冊知識點總結,、希望這份資料能夠補上孩子的不足,好好利用這份資料就會在開學考試的時候考出好成績。正好現在有時間,好好學習吧!
『伍』 九年級上冊數學主要內容
九年級上冊數學期末基礎知識復習
二次根式
知識點1.二次根式 重點:掌握二次根式的概念。 難點:二次根式有意義的條件
式子
(a≥0)叫做二次根式.
知識點 2.最簡二次根式
重點:掌握最簡二次根式的條件[來源:學.難點:正確分清是否為最簡二次根式
同時滿足:①被開方數的因數是整數,因式是整式(分母中不含根號);②被開方數中含能開得盡方的因數或因式.這樣的二次根式叫做最簡二次根式.
知識點3.同類二次根式
重點:掌握同類二次根式的概念 難點:正確分清是否為同類二次根式
幾個二次根式化成最簡二次根式後,如果被開方數相同,這幾個二次根式就叫同類二次根式.
知識點4.二次根式的性質
重點:掌握二次根式的性質 難點:理解和熟練運用二次根式的性質
①(
)2=a(a≥0);
②
=│a│=
;
知識點5.分母有理化及有理化因式
重點:掌握分母有理化及有理化因式的概念
難點:熟練進行分母有理化,求有理化因式
把分母中的根號化去,叫做分母有理化;兩個含有二次根式的代數式相乘,若它們的積不含二次根式,則稱這兩個代數式互為有理化因式.
例觀察下列分母有理化的計算:
,從計算結果中找出規律,並利用這一規律計算:
=_____________
解題思路:
知識點6.二次根式的運算
重點:掌握二次根式的運演算法則 難點:熟練進行二次根式的運算
(1)因式的外移和內移:如果被開方數中有的因式能夠開得盡方,那麼,就可以用它的算術根代替而移到根號外面;如果被開方數是代數和的形式,那麼先解因式,變形為積的形式,再移因式到根號外面,反之也可以將根號外面的正因式平方後移到根號裡面.
(2)二次根式的加減法:先把二次根式化成最簡二次根式再合並同類二次根式.
(3)二次根式的乘除法:二次根式相乘(除),將被開方數相乘(除),所得的積(商)仍作積(商)的被開方數並將運算結果化為最簡二次根式.
=
·
(a≥0,b≥0);
(b≥0,a>0).
(4)有理數的加法交換律、結合律,乘法交換律及結合律,乘法對加法的分配律以及多項式的乘法公式,都適用於二次根式的運算.
最新考題中考要求及命題趨勢1、掌握二次根式的有關知識,包括概念,性質、運算等;2、熟練地進行二次根式的運算
一 元 二 次 方 程
一、知識結構:
一元二次方程:概念、解與解法、實際應用、根與系數的關系。
二、考點精析
考點一、概念(1)定義:①只含有一個未知數,並且②未知數的最高次數是2,這樣的③整式方程就是一元二次方程。
(2)一般表達式:
⑶難點:如何理解 「未知數的最高次數是2」:①該項系數不為「0」;②未知數指數為「2」;
③若存在某項指數為待定系數,或系數也有待定,則需建立方程或不等式加以討論。
例2、方程
是關於x的一元二次方程,則m的值為 。
考點二、方程的解
⑴概念:使方程兩邊相等的未知數的值,就是方程的解。 ⑵應用:利用根的概念求代數式的值;
典型例題:例1、已知
的值為2,則
的值為
。
考點三、解法
⑴方法:①直接開方法;②因式分解法;③配方法;④公式法 ⑵關鍵點:降次
類型一、直接開方法:
※※對於
,
等形式均適用直接開方法
典型例題:例1、解方程:
=0;
例2、若
,則x的值為 。
類型二、因式分解法:
※方程特點: 左邊可以分解為兩個一次因式的積,右邊為「0」,
※方程形式:如
,
,
典型例題:例1、
的根為( )A .
B .
C .
D.
例2、若
,則4x+y的值為 。
類型三、配方法
※在解方程中,多不用配方法;但常利用配方思想求解代數式的值或極值之類的問題。
典型例題:試用配方法說明
的值恆大於0。
類型四、公式法⑴條件:
⑵公式:
,
典型例題: 例1、選擇適當方法解下列方程:
⑴
⑵
⑶
類型五、 「降次思想」的應用
⑴求代數式的值; ⑵解二元二次方程組。
典型例題:已知
,求代數式
的值。
考點四、根的判別式
根的判別式的作用:①定根的個數;②求待定系數的值;③應用於其它。
典型例題:例1、若關於
的方程
有兩個不相等的實數根,則k的取值范圍是 。
考點五、方程類問題中的「分類討論」
典型例題: 例1、討論關於x的方程
根的情況。
考點六、應用解答題
⑴「碰面」問題;⑵「復利率」問題;⑶「幾何」問題;
⑷「最值」型問題;⑸「圖表」類問題
典型例題:
1、將一條長20cm的鐵絲剪成兩段,並以每一段鐵絲的長度為周長作成一個正方形。
(1)要使這兩個正方形的面積之和等於17cm2,那麼這兩段鐵絲的長度分別為多少?
考點七、根與系數的關系
⑴前提:對於
而言,當滿足①
、②
時,
才能用韋達定理。
⑵主要內容:
⑶應用:整體代入求值。
典型例題:例1、已知關於x的方程
有兩個不相等的實數根
,
(1)求k的取值范圍;
(2)是否存在實數k,使方程的兩實數根互為相反數?若存在,求出k的值;若不存在,請說明理由。
旋轉
知識網路圖表
圖案設計
識別及應用
關於原點對稱的點的坐標
中心對稱
中心對稱圖形
圖形旋轉
平移及性質
平移及性質
旋轉及性質
(1)
中心對稱:把一個圖形繞某一點旋轉
,如果能與另一個圖形重合.這個點叫對稱中心,這兩個圖形中的對應點關於這一點對稱.
(2)
關於旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等於旋轉角;旋轉前後的圖形全等。
第1題. 下列是中心對稱圖形的有()
(1)線段;(2)角;(3)等邊三角形;(4)正方形;(5)平行四邊形;(6)矩形;(7)等腰梯形.
A.2個 B.3個 C.4個 D.5個
答案:C.
第5題. 在線段、射線、兩條相交直線、五角星中,是中心對稱圖形的個數為()
A.1個 B.2個 C.3個 D.4個 答案:B.
圓
一、知識點
1、與圓有關的角——圓心角、圓周角
(1)圖中的圓心角 ∠ AOB ;圓周角∠
ACB ;
(2)如圖,已知∠AOB=50度,則∠ACB= 25
度;
(3)在上圖中,若AB是圓O的直徑,則∠AOB= 180
度;則∠ACB= 90
度;
2、圓的對稱性:
(1)圓是軸對稱圖形,其對稱軸是任意一條
過圓心 的直線;
圓是中心對稱圖形,對稱中心為 圓心 .
(2)垂徑定理:垂直於弦的直徑平分這條弦,並且平分弦所對的弧.
如圖,∵CD是圓O的直徑,CD⊥AB於E∴ = , =
3、點和圓的位置關系有三種:點在圓 ,點在圓 ,點在圓 ;
4、直線和圓的位置關系有三種:相 、相 、相 .
5、圓與圓的位置關系:
6、切線性質:
例4:(1)如圖,PA是⊙O的切線,點A是切點,則∠PAO= 度
(2)如圖,PA、PB是⊙O的切線,點A、B是切點,
則 = ,∠ =∠ ;
7、圓中的有關計算
(1)弧長的計算公式:
例5:若扇形的圓心角為60°,半徑為3,則這個扇形的弧長是多少?
解:因為扇形的弧長=
所以
=
= (答案保留π)
(2)扇形的面積:
例6:①若扇形的圓心角為60°,半徑為3,則這個扇形的面積為多少?
解:因為扇形的面積S=
所以S=
= (答案保留π)
②若扇形的弧長為12πcm,半徑為6㎝,則這個扇形的面積是多少?
解:因為扇形的面積S=
所以S= =
( 3)圓錐:
例7:圓錐的母線長為5cm,半徑為4cm,則圓錐的側面積是多少?
解:∵圓錐的側面展開圖是 形,展開圖的弧長等於
∴圓錐的側面積=
概率初步
【知識梳理】
1.生活中的隨機事件分為確定事件和不確定事件,確定事件又分為必然事件和不可能事件,其中,
① 必然事件發生的概率為1,即P(必然事件)=1;
② 不可能事件發生的概率為0,即P(不可能事件)=0;
③ 如果A為不確定事件,那麼0<P(A)<1
2.隨機事件發生的可能性(概率)的計算方法:
① 理論計算又分為如下兩種情況:
第一種:只涉及一步實驗的隨機事件發生的概率,如:根據概率的大小與面積的關系,對一類概率模型進行的計算;
第二種:通過列表法、列舉法、樹狀圖來計算涉及兩步或兩步以上實驗的隨機事件發生的概率,如:對游戲是否公平的計算。
② 實驗估算又分為如下兩種情況:
第一種:利用實驗的方法進行概率估算。要知道當實驗次數非常大時,實驗頻率可作為事件發生的概率的估計值,即大量實驗頻率穩定於理論概率。
第二種:利用模擬實驗的方法進行概率估算。如,利用計算器產生隨機數來模擬實驗。
綜上所述,目前掌握的有關於概率模型大致分為三類;第一類問題沒有理論概率,只能藉助實驗模擬獲得其估計值;第二類問題雖然存在理論概率但目前尚不可求,只能藉助實驗模擬獲得其估計值;第三類問題則是簡單的古典概型,理論上容易求出其概率。
『陸』 初三上冊數學知識點歸納
初三數學知識點 第一章 二次根式 1 二次根式:形如a
(0a)的式子為二次根式;
性質:a
(0a)是一個非負數;
02
aaa
;
02
aaa
。
2 二次根式的乘除: 0,0
baabba;
0,0
bab
ab
a。
3 二次根式的加減:二次根式加減時,先將二次根式華為最簡二次根式,再將被開方數相同的二次根式進行合並。
4 海倫-秦九韶公式:)
)()((cpbpppS
,S是三角形的面積,
p為2
c
bap
。
第二章 一元二次方程
1 一元二次方程:等號兩邊都是整式,且只有一個未知數,未知數的最高次是2的方程。
2 一元二次方程的解法
配方法:將方程的一邊配成完全平方式,然後兩邊開方; 公式法:a
acbbx242
因式分解法:左邊是兩個因式的乘積,右邊為零。 3 一元二次方程在實際問題中的應用
4 韋達定理:設21,xx是方程02cbxax的兩個根,那麼有
初三全科目課件教案習題匯總語文數學英語物理化學
a
cxxa
bxx
2121
,
第三章 旋轉 1 圖形的旋轉
旋轉:一個圖形繞某一點轉動一個角度的圖形變換 性質:對應點到旋轉中心的距離相等;
對應點與旋轉中心所連的線段的夾角等於旋轉角 旋轉前後的圖形全等。
2 中心對稱:一個圖形繞一個點旋轉180度,和另一個圖
形重合,則兩個圖形關於這個點中心對稱;
中心對稱圖形:一個圖形繞某一點旋轉180度後得到的
圖形能夠和原來的圖形重合,則說這個圖形是中心對稱圖形;
3 關於原點對稱的點的坐標 第四章 圓
1 圓、圓心、半徑、直徑、圓弧、弦、半圓的定義 2 垂直於弦的直徑
圓是軸對稱圖形,任何一條直徑所在的直線都是它
的對稱軸;
垂直於弦的直徑平分弦,並且平方弦所對的兩條弧; 平分弦的直徑垂直弦,並且平分弦所對的兩條弧。 3 弧、弦、圓心角
在同圓或等圓中,相等的圓心角所對的弧相等,所
對的弦也相等。
4 圓周角
在同圓或等圓中,同弧或等弧所對的圓周角相等,都等
於這條弧所對的圓心角的一半;
半圓(或直徑)所對的圓周角是直角,90度的圓周角
所對的弦是直徑。
5 點和圓的位置關系 點在
rd
點在圓上 d=r 點在圓內 d<r
定理:不在同一條直線上的三個點確定一個圓。 三角形的外接圓:經過三角形的三個頂點的圓,外接圓的
圓心是三角形的三條邊的垂直平分線的交點,叫做三角形的外心。
6直線和圓的位置關系 相交 d<r 相切 d=r 相離 d>r
切線的性質定理:圓的切線垂直於過切點的半徑; 切線的判定定理:經過圓的外端並且垂直於這條半徑的直
線是圓的切線;
切線長定理:從圓外一點引圓的兩條切線,它們的切線長
相等,這一點和圓心的連線平分兩條切線的夾角。
三角形的內切圓:和三角形各邊都相切的圓為它的內切圓,
圓心是三角形的三條角平分線的交點,為三角形的內心。
7 圓和圓的位置關系
外離 d>R+r 外切 d=R+r 相交 R-r<d<R+r 內切 d=R-r 內含 d<R-r 8 正多邊形和圓
正多邊形的中心:外接圓的圓心 正多邊形的半徑:外接圓的半徑 正多邊形的中心角:沒邊所對的圓心角 正多邊形的邊心距:中心到一邊的距離 9 弧長和扇形面積 弧長 180
rnl
扇形面積:360
2
rnS
10 圓錐的側面積和全面積 側面積: 全面積
11 (附加)相交弦定理、切割線定理
第五章 概率初步
1 概率意義:在大量重復試驗中,事件A發生的頻率nm
穩定在
某個常數p附近,則常數p叫做事件A的概率。
2 用列舉法求概率
一般的,在一次試驗中,有n中可能的結果,並且它們發生的概率相等,事件A包含其中的m中結果,那麼事件A發生的概率就是p(A)=
n
m
『柒』 人教版初三上冊數學各章節重要知識點歸納(推薦下載)
主要知識點二次根式。
一般地,形如√a的代數式叫做二次根式,其中,a叫做被開方數。當a≥0時,√a表示a的算術平方根;當a小於0時,√a的值為純虛數(在一元二次方程求根公式中,若根號下為負數,則方程有兩個共軛虛根)。
判斷一個二次根式是否為最簡二次根式主要方法是根據最簡二次根式的定義進行,或直觀地觀察被開方數的每一個因數(或因式)的指數都小於根指數2,且被開方數中不含有分母,被開方數是多項式時要先因式分解後再觀察。
最簡二次根式
最簡二次根式條件:
1、被開方數的因數是整數或字母,因式是整式;
2、被開方數中不含有可化為平方數或平方式的因數或因式。
以上資料參考:網路-二次根式
『捌』 人教版【初中數學】知識點總結-全面整理(超全)
《初中數學|升級版人教版初中數學七年級下冊》網路網盤資源免費下載
鏈接:https://pan..com/s/1Aqd2mzuHw21jbIBsyK9EUQ
初中數學|升級版人教版初中數學七年級下冊|升級版人教版初中數學七年級上冊|升級版人教版初中數學九年級下冊|升級版人教版初中數學九年級上冊|升級版人教版初中數學八年級下冊|升級版人教版初中數學八年級上冊|人教版初中數學7年級上冊|數學初中2上15.4因式分解(一).rmvb|數學初中2上15.4因式分解(二).rmvb|數學初中2上15.3同底數冪的除法.rmvb|數學初中2上15.2乘法公式.rmvb|數學初中2上15.1整式的乘法(一).rmvb|數學初中2上15.1整式的乘法(二).rmvb|數學初中2上14.4選擇方案(一).rmvb