當前位置:首頁 » 基礎知識 » 七年級上冊數學課本第一課知識
擴展閱讀
油漆的知識大全 2025-01-18 06:39:30

七年級上冊數學課本第一課知識

發布時間: 2022-07-20 02:14:15

㈠ 初一的數學的第一課在講什麼

一般直接講第一章,書本的內容因版本而異
ps:北師大版 第一單元整式運算;蘇科版第一章為:我們與數學同行;人教版好像改版了不過應該是實數

另外,有的老師第一節課不講課與學生互動因老師而異

㈡ 急求2010年初一上冊數學人教版第一課正數與負數的詳細內容 好的加分

我們在生活、生產中,經常遇到相反意義的量。如零上3度和零下6度;前進6米和後退6米;小學使用的地圖上珠穆朗瑪峰和吐魯番盤地的標高等。再用小學里學過的這些量表示還是不夠的,因此就有了用正數、負數來表示這些相反意義上的量。本節正數和負數是我們以後學習中用到的最多的量,也是學習初中數學的基礎。一、知識要點突破
知識要點一:正數、負數的定義
正數、負數表示具有相反意義的量。如果規定向東為正,那麼向西就為負。注意:1.負數前面的「—」好不能省略,否則就變成正數了。
2.對於正數和負數,不能簡單地理解為:帶「+」好的數是正數,帶「—」號的數是負數。例如:—a不一定是負數。
知識要點二:0的意義
我們在小學「0」僅表示「沒有」或「空位」。但是引入負數後,「0」具有了更加豐富的意義。比如「0」可以是正數、負數的分界線。
知識要點三:正數、負數表示具有相反意義的量在實際中的應用
因為在實際生活中需要簡明地表示一些具有相反意義的量,這時我們規定一個標准,比標准多的為正數,比標准少的為負數。注意:題目中沒有指名哪個量用正數表示,哪個量用負數表示,習慣把「前進、上升、收入、零上、增加、超額、多」等具有相反意義的量作為負數。
1.
正數與負數是實際需要而產生的
正數和負數是根據實際需要而產生的,隨著知識面的拓寬,小學學過的自然數、分數和小數已不能滿足實際需要,比如一些具有相反意義的量,收入200元和支出100元,零上6℃和零下4℃等等。它們不但意義相反,而且表示一定的數量。怎麼表示它們呢?我們把一種意義規定為正的,把另一種和它意義相反的量規定為負的,這樣就產生了正數和負數。
2.
正數和負數的概念
(1)象5,
……這樣的數叫正數。

等都是正數。
在正數前面加上「-」(讀作負)號的數叫做負數。

等都是負數。
(2)零既不是正數也不是負數,它表示正數和負數的分界。
3.
有理數的有關概念
(1)整數和分數統稱為有理數。
注意:整數也可以看成分母為1的分數,但為了研究方便,本章中分數就是指不包括整數的分數。
(2)整數包括正整數、零、負整數。
(3)分數包括正分數和負分數。
4.
有理數分類
(1)按正數、負數和0的關系分類:
(2)按整數和分數的關系分類:
(1)有理數分為整數和分數.整數分為正整數、零、負整數;分數分為正分數和負分數.即:

㈢ 七年級數學上冊知識點歸納

七年級(上)數學知識點歸納與總結
一、 知識梳理

知識點1:正、負數的概念:我們把像3、2、+0.5、0.03%這樣的數叫做正數,它們都是比0大的數;像-3、-2、-0.5、 -0.03%這樣數叫做負數。它們都是比0小的數。0既不是正數也不是負數。我們可以用正數與負數表示具有相反意義的量。

知識點2:有理數的概念和分類:整數和分數統稱有理數。有理數的分類主要有兩種:

註:有限小數和無限循環小數都可看作分數。

知識點3:數軸的概念:像下面這樣規定了原點、正方向和單位長度的直線叫做數軸。

知識點4:絕對值的概念:
(1) 幾何意義:數軸上表示a的點與原點的距離叫做數a的絕對值,記作|a|;
(2) 代數意義:一個正數的絕對值是它的本身;一個負數的絕對值是它的相反數;零的絕對值是零。
註:任何一個數的絕對值均大於或等於0(即非負數).

知識點5:相反數的概念:
(1) 幾何意義:在數軸上分別位於原點的兩旁,到原點的距離相等的兩個點所表示的數,叫做互為相反數;
(2) 代數意義:符號不同但絕對值相等的兩個數叫做互為相反數。0的相反數是0。
知識點6:有理數大小的比較:
有理數大小比較的基本法則:正數都大於零,負數都小於零,正數大於負數。
數軸上有理數大小的比較:在數軸上表示的兩個數,右邊的數總比左邊的大。
用絕對值進行有理數大小的比較:兩個正數,絕對值大的正數大;兩個負數,絕對值大的負數反而小。

知識點7:有理數加法法則:
(1)同號兩數相加,取相同的符號,並把絕對值相加;
(2)異號兩數相加,絕對值相等時,和為0;絕對值不等時,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值;
(3)一個數與0相加,仍得這個數.

知識點8:有理數加法運算律:
加法交換律:兩個數相加,交換加數的位置,和不變。

加法結合律:三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。

知識點9:有理數減法法則:減去一個數,等於加上這個數的相反數。

知識點10:有理數加減混合運算:根據有理數減法的法則,一切加法和減法的運算,都可以統一成加法運算,然後省略括弧和加號,並運用加法法則、加法運算律進行計算。

知識點11: 乘法與除法
1.乘法法則
2.除法法則
3.多個非零的數相乘除最後結果符號如何確定

知識點12:倒數
1. 倒數概念
2. 如何求一個數的倒數?(注意與相反數的區別)

知識點13:乘方
1. 乘方的概念,乘方的結果叫什麼?
2. 認識底數,指數
3. 正數的任何次冪是_________,零的任何次冪________
負數的偶次冪是_________奇次冪是________

知識點14:混合計算
注意:運算順序是關鍵,計算時要嚴格按照順序運算.考試經常考帶乘方的計算.

知識點15:科學記數法
科學記數法的概念? 注意a的范圍
(人教)

㈣ 初一上數學第一課正數和負數全部知識點!越全越好全面追加200分

規定了原點,正方向,單位長度的直線叫做數軸。
注意:⑴數軸是一條向兩端無限延伸的直線;⑵原點、正方向、單位長度是數軸的三要素,三者缺一不可;⑶同一數軸上的單位長度要統一;⑷數軸的三要素都是根據實際需要規定的。
2.數軸上的點與有理數的關系
⑴所有的有理數都可以用數軸上的點來表示,正有理數可用原點右邊的點表示,負有理數可用原點左邊的點表示,0用原點表示。
⑵所有的有理數都可以用數軸上的點表示出來,但數軸上的點不都表示有理數,也就是說,有理數與數軸上的點不是一一對應關系。(如,數軸上的點π不是有理數)
3.利用數軸表示兩數大小
⑴在數軸上數的大小比較,右邊的數總比左邊的數大; ⑵正數都大於0,負數都小於0,正數大於負數;
⑶兩個負數比較,距離原點遠的數比距離原點近的數小。
4.數軸上特殊的最大(小)數
⑴最小的自然數是0,無最大的自然數; ⑵最小的正整數是1,無最大的正整數; ⑶最大的負整數是-1,無最小的負整數
5.a可以表示什麼數
⑴a>0表示a是正數;反之,a是正數,則a>0; ⑵a<0表示a是負數;反之,a是負數,則a<0 ⑶a=0表示a是0;反之,a是0,,則a=0
6.數軸上點的移動規律
根據點的移動,向左移動幾個單位長度則減去幾,向右移動幾個單位長度則加上幾,從而得到所需的點的位置。
相反數
⒈相反數
只有符號不同的兩個數叫做互為相反數,其中一個是另一個的相反數,0的相反數是0。 注意:⑴相反數是成對出現的;⑵相反數只有符號不同,若一個為正,則另一個為負; ⑶0的相反數是它本身;相反數為本身的數是0。
2.相反數的性質與判定
⑴任何數都有相反數,且只有一個;
⑵0的相反數是0;
⑶互為相反數的兩數和為0,和為0的兩數互為相反數,即a,b互為相反數,則a+b=0

3.相反數的幾何意義
在數軸上與原點距離相等的兩點表示的兩個數,是互為相反數;互為相反數的兩個數,在數軸上的對應

點(0除外)在原點兩旁,並且與原點的距離相等。0的相反數對應原點;原點表示0的相反數。 說明:在數軸上,表示互為相反數的兩個點關於原點對稱。
4.相反數的求法
⑴求一個數的相反數,只要在它的前面添上負號「-」即可求得(如:5的相反數是-5);
⑵求多個數的和或差的相反數是,要用括弧括起來再添「-」,然後化簡(如;5a+b的相反數是-(5a+b)。化簡得-5a-b); ⑶求前面帶「-」的單個數,也應先用括弧括起來再添「-」,然後化簡(如:-5的相反數是-(-5),化簡得5)
5.相反數的表示方法
⑴一般地,數a 的相反數是-a ,其中a是任意有理數,可以是正數、負數或0。 當a>0時,-a<0(正數的相反數是負數) 當a<0時,-a>0(負數的相反數是正數) 當a=0時,-a=0,(0的相反數是0)
6.多重符號的化簡
多重符號的化簡規律:「+」號的個數不影響化簡的結果,可以直接省略;「-」號的個數決定最後化簡結果;即:「-」的個數是奇數時,結果為負,「-」的個數是偶數時,結果為正。
絕對值
⒈絕對值的幾何定義
一般地,數軸上表示數a的點與原點的距離叫做a的絕對值,記作|a|。
2.絕對值的代數定義
⑴一個正數的絕對值是它本身; ⑵一個負數的絕對值是它的相反數; ⑶0的絕對值是0.
可用字母表示為:
①如果a>0,那麼|a|=a; ②如果a<0,那麼|a|=-a; ③如果a=0,那麼|a|=0。
可歸納為①:a≥0,<═> |a|=a (非負數的絕對值等於本身;絕對值等於本身的數是非負數。) ②a≤0,<═> |a|=-a (非正數的絕對值等於其相反數;絕對值等於其相反數的數是非正數。)
3.絕對值的性質
任何一個有理數的絕對值都是非負數,也就是說絕對值具有非負性。所以,a取任何有理數,都有|a|≥0。即⑴0的絕對值是0;絕對值是0的數是0.即:a=0 <═> |a|=0;
⑵一個數的絕對值是非負數,絕對值最小的數是0.即:|a|≥0;
⑶任何數的絕對值都不小於原數。即:|a|≥a;
⑷絕對值是相同正數的數有兩個,它們互為相反數。即:若|x|=a(a>0),則x=±a; ⑸互為相反數的兩數的絕對值相等。即:|-a|=|a|或若a+b=0,則|a|=|b|;
⑹絕對值相等的兩數相等或互為相反數。即:|a|=|b|,則a=b或a=-b;
⑺若幾個數的絕對值的和等於0,則這幾個數就同時為0。即|a|+|b|=0,則a=0且b=0。
(非負數的常用性質:若幾個非負數的和為0,則有且只有這幾個非負數同時為0)
4.有理數大小的比較
⑴利用數軸比較兩個數的大小:數軸上的兩個數相比較,左邊的總比右邊的小;

⑵利用絕對值比較兩個負數的大小:兩個負數比較大小,絕對值大的反而小;異號兩數比較大小,正數大於負數。
5.絕對值的化簡
①當a≥0時, |a|=a ; ②當a≤0時, |a|=-a
6.已知一個數的絕對值,求這個數
一個數a的絕對值就是數軸上表示數a的點到原點的距離,一般地,絕對值為同一個正數的有理數有兩個,它們互為相反數,絕對值為0的數是0,沒有絕對值為負數的數。
有理數的加減法
1.有理數的加法法則
⑴同號兩數相加,取相同的符號,並把絕對值相加;
⑵絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值; ⑶互為相反數的兩數相加,和為零; ⑷一個數與零相加,仍得這個數。
2.有理數加法的運算律 ⑴加法交換律:a+b=b+a
⑵加法結合律:(a+b)+c=a+(b+c)
在運用運算律時,一定要根據需要靈活運用,以達到化簡的目的,通常有下列規律: ①互為相反數的兩個數先相加——「相反數結合法」; ②符號相同的兩個數先相加——「同號結合法」; ③分母相同的數先相加——「同分母結合法」; ④幾個數相加得到整數,先相加——「湊整法」; ⑤整數與整數、小數與小數相加——「同形結合法」。
3.加法性質
一個數加正數後的和比原數大;加負數後的和比原數小;加0後的和等於原數。即: ⑴當b>0時,a+b>a ⑵當b<0時,a+b<a ⑶當b=0時,a+b=a
4.有理數減法法則
減去一個數,等於加上這個數的相反數。用字母表示為:a-b=a+(-b)。
5.有理數加減法統一成加法的意義
在有理數加減法混合運算中,根據有理數減法法則,可以將減法轉化成加法後,再按照加法法則進行計算。
在和式里,通常把各個加數的括弧和它前面的加號省略不寫,寫成省略加號的和的形式。如:

(-33)-(-18)+(-15)-(+1)+(+23)
原式=-33+(+18)+(-15)+(-1)+(+23) (將減法轉換成加法)
=-33+18-15-1+23 (省略加號和括弧)
=(-33-15-1)+(18+23) (把符號相同的加數相結合) =-49+41 (運用加法法則一進行運算)
=-8 (運用加法法則二進行運算)
Ⅱ.把和為整數的加數相結合 (湊整法) (+6.6)+(-5.2)-(-3.8)+(-2.6)-(+4.8)
原式=(+6.6)+(-5.2)+(+3.8)+(-2.6)+(-4.8) (將減法轉換成加法)
=6.6-5.2+3.8-2.6-4.8 (省略加號和括弧)
=(6.6-2.6)+(-5.2-4.8)+3.8 (把和為整數的加數相結合)
=4-10+3.8 (運用加法法則進行運算)
=7.8-10 (把符號相同的加數相結合,並進行運算) =-2.2 (得出結論)
Ⅲ.把分母相同或便於通分的加數相結合(同分母結合法) -5
3-2
1+43
-52
+21
-87

原式=(-53-52)+(-21+21)+(+43-8
7
)
=-1+0-81

=-181

Ⅳ.既有小數又有分數的運算要統一後再結合(先統一後結合) (+0.125)-(-34
3)+(-38
1)-(-103
2)-(+1.25) 原式=(+
8
1)+(+343
)+(-381
)+(+103
2
)+(-1
4
1)
=81+343-381+1032-141 =(343-141)+(81-381)+1032
=221-3+103
2 =-3+1361

=1061

Ⅴ.把帶分數拆分後再結合(先拆分後結合)

-3
5
1
+10
11
6
-12
22
1
+4
15
7
原式=(-3+10-12+4)+(-51+157)+(116-22
1
)
=-1+154+2211
=-1+308+3015
-307 Ⅵ.分組結合
2-3-4+5+6-7-8+9„+66-67-68+69
原式=(2-3-4+5)+(6-7-8+9)+„+(66-67-68+69)
=0
Ⅶ.先拆項後結合
(1+3+5+7„+99)-(2+4+6+8„+100)
有理數的乘除法
1.有理數的乘法法則
法則一:兩數相乘,同號得正,異號得負,並把絕對值相乘;(「同號得正,異號得負」專指「兩數相乘」的情況,如果因數超過兩個,就必須運用法則三) 法則二:任何數同0相乘,都得0; 法則三:幾個不是0的數相乘,負因數的個數是偶數時,積是正數;負因數的個數是奇數時,積是負數; 法則四:幾個數相乘,如果其中有因數為0,則積等於0. 2.倒數
乘積是1的兩個數互為倒數,其中一個數叫做另一個數的倒數,用式子表示為a²a
1=1(a≠0),就是
說a和
a1
互為倒數,即a是
a1
的倒數,
a
1
是a的倒數。
注意:①0沒有倒數;
②求假分數或真分數的倒數,只要把這個分數的分子、分母點顛倒位置即可;求帶分數的倒數時,先把
帶分數化為假分數,再把分子、分母顛倒位置; ③正數的倒數是正數,負數的倒數是負數。(求一個數的倒數,不改變這個數的性質); ④倒數等於它本身的數是1或-1,不包括0。
3.有理數的乘法運算律
⑴乘法交換律:一般地,有理數乘法中,兩個數相乘,交換因數的位置,積相等。即ab=ba
⑵乘法結合律:三個數相乘,先把前兩個數相乘,或者先把後兩個數相乘,積相等。即(ab)c=a(bc). ⑶乘法分配律:一般地,一個數同兩個數的和相乘,等於把這個數分別同這兩個數相乘,在把積相加。即a(b+c)=ab+ac 4.有理數的除法法則

(1)除以一個不等0的數,等於乘以這個數的倒數。
(2)兩數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不等於0的數,都得0
5.有理數的乘除混合運算
(1)乘除混合運算往往先將除法化成乘法,然後確定積的符號,最後求出結果。
(2)有理數的加減乘除混合運算,如無括弧指出先做什麼運算,則按照『先乘除,後加減』的順序進行。
有理數的乘方
1.乘方的概念
求n 個相同因數的積的運算,叫做乘方,乘方的結果叫做冪。在 na 中,a 叫做底數,n 叫做指數。 2.乘方的性質
(1)負數的奇次冪是負數,負數的偶次冪的正數。
(2)正數的任何次冪都是正數,0的任何正整數次冪都是0。
有理數的混合運算
做有理數的混合運算時,應注意以下運算順序: 1.先乘方,再乘除,最後加減;
2.同級運算,從左到右進行;
3.如有括弧,先做括弧內的運算,按小括弧,中括弧,大括弧依次進行。

㈤ 初一數學第一課內容

北師大版 第一單元整式運算 第一課整式
目的:主要讓我們認識單項式與多項式。
概念:單項式和多項式統稱為整式。
單獨的一個數和字母也是單項式。
單獨一個非零數的次數是0。
-------

㈥ 人教版初一數學第一課是什麼

第一章 豐富的圖形世界
1.生活中的立體圖形
2.展開與折疊
3.截一個集合體
4從不同方向看
2.生活中的平面圖形
第二章 有理數及其運算
1.數怎麼不夠用了
2.數軸
3.絕對值
4-6.有理數加法、減法、加減混合運算
7.水位的變化
8.有理數的乘法
9.有理數的除法
10有理數的乘方
11.有理數混合運算
12計算機的使用

希望能幫助到你~

㈦ 七年級上冊數學書內容有哪些

七年級上冊數學書內容有:

一、整式的加減

1、單項式:表示數字或字母乘積的式子,單獨的一個數字或字母也叫單項式;

2、單項式的系數與次數:單項式中的數字因數,稱單項式的系數;

單項式中所有字母指數的和,叫單項式的次數;

3、多項式:幾個單項式的和叫多項式;

4、多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數最高項的次數叫多項式的次數;

5、同類項:所含字母相同,並且相同字母的指數也相同的單項式是同類項。

二、分數的加減法

1、通分與約分雖都是針對分式而言,但卻是兩種相反的變形。約分是針對一個分式而言,而通分是針對多個分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統一。

2、通分和約分都是依據分式的基本性質進行變形,其共同點是保持分式的值不變。

3、一般地,通分結果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項式,為進一步運算作準備。

4、通分的依據:分式的基本性質。

5、通分的關鍵:確定幾個分式的公分母。

通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡公分母。

6、類比分數的通分得到分式的通分

把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分。

三、周長公式

常見的有以下幾類:

1、長方形周長=(長+寬)×2,C=2(a+b)

2、正方形周長=邊長×4,C=4a

3、圓周長=直徑×圓周率,C=2π

四、面積公式

常見的有以下幾類:

1、長方形面積=長×寬,S=ab

2、正方形面積=邊長×邊長,S=a²

3、三角形面積=底×高÷2,S=ah/2

4、平行四邊形面積=底×高,S=ah

5、梯形面積=(上底+下底)×高÷2,S=1/2(a+b)h

6、圓形面積=半徑×半徑×圓周率,S=πr

7、扇形面積=半徑×半徑×圓周率×圓心角度數(n)÷360,S=nπr²/360

㈧ 七年級上冊數學書內容有哪些

七年級上冊數學書重要內容:

(一)有理數。

(1)定義:由整數和分數組成的數。包括:正整數、0、負整數,正分數、負分數。可以寫成兩個整之比的形式。

(2)數軸:在數學中,可以用一條直線上的點表示數,這條直線 叫做數軸。

(3)相反數:相反數是一個數學術語,指值相等,正負號相反的兩個數互為相反數。

(4)值:值是指一個數在數軸上所對應點到原點的距離。正數的值是它本身,負數的值是它的相反數;0的值是0,兩個負數,值大的反而小。

(5)有理數的加減法。

同號相加,到相同符號,並把值相加。異號相加,取值大的加數的符號,並用較大的值減去較小的值。

(6)有理數的乘法。

兩數相乘,同號得正,異號得負,並把值相乘。

任何數與0相乘,積為0. 例:0×1=0

(7)有理數的除法。除以一個不為0的數,等於乘這個數的倒數。

兩數相除,同號得正,異號得負,並把值相除。0除

以任何一個不為0的數,都得0。

(8)有理數的乘方。求n個相同因數乘積的運算,叫做乘方,乘方的結果叫做冪。其中,a叫做底數,n叫做指數。當a?看作a的n次乘方的結果時,也可讀作「a的n次冪」或「a的n次方」。

(二)整式

(1)整式:是單項式和多項式的統稱,是有理式的一部分,在有理式中可以包含加,減,乘,除、乘方五種運算,但在整式中除數不能含有字母。

①單項式:由數或字母的積組成的代數式叫做單項式,單獨的一個數或一個字母也叫做單項式。

②多項式:由若干個單項式相加組成的代數式叫做多項式。

③系數:單項式中所有字母的指數的和叫做它的次數。

④次數:一個單項式中,所有變數字母的指數之和,叫做這個單項式的次數。

⑤項:組成多項式的每個單項式叫做多項式的項。

⑥多項式的次數:多項式中,次數比較高的項的次數叫做這個多項式的次數。

⑦同類項:多項式中,所含字母相同,並且相同字母的指數也相同的項叫做同類項。

⑧合並同類項:把多項式中的同類項合並成一項,叫做合並同類項。

(2)整式加減。

整式的加減運算時,如果遇到括弧先去掉括弧,再合並同類項。

(三)一元一次方程

(1)定義:

一元一次方程指只含有一個未知數、未知數的比較高次數為1且兩邊都為整式的等式,叫做一元一次方程。求出方程中未知數的值叫做方程式的解。

(2)解一元一次方程的步驟:

①去分母:把系數化成整數。

②去括弧。

③移項:把等式一邊的某項變號後移到另一邊。

④合並同類項。

⑤系數化為1。

(四)幾何圖形。

(1)幾何圖形。

將從實物中抽象出的各種圖形統稱為幾何圖形。幾何圖形分為立體圖形和平面圖形。

(2)立體圖形。

立體圖形是各部分不在同一平面內的幾何圖形,由一個或多個面圍成的可以存在於現實生活中的三維圖形。點動成線,線動成面,面動成體。

分類:柱體、錐體、旋轉體、截面體等。

(3)平面圖形。

平面圖形是幾何圖形的一種,指所有點都在同一平面內的圖形,如直線、三角形、平形四邊形等都是基本的平面圖形。

分類:圓形、多邊形、弓形、多弧形。

(4)點、線、面、體。

點:點是比較簡單的形,是幾何圖形比較基本的組成部分。點是空間中只有位置,沒有大小的圖形。

線:線是由個點集合成的圖形。

面:在空間中,到兩點距離相同的點的軌跡。

體:多面體是指四個或四個以上多邊形所圍成的立體。

(5)直線、射線、線段。

直線:直線由個點構成。沒有端點,向兩端無限延長,長度無法度量。直線是軸對稱圖形。

射線:是指由線段的一端無限延長所形成的直的線,射線有且僅有一個端點,無法測量長度。

線段:是指直線上兩點間的有限部分(包括兩個端點) ,有別於直線、射線。

(6)角:在幾何學中,角是由兩條有公共端點的射線組成的幾何對象。這兩條射線叫做角的邊,它們的公共端點叫做角的頂點。

(7)餘角:兩角之和為90°則兩角互為餘角,等角的餘角相等。

(8)補角:兩角之和為180°則兩角互為補角,等角的補角相等。

《七年級數學》是2010年龍門書局出版的圖書,主編是洪林旺。本書收錄了全國各省高考狀元的各個學科的學習心得和方法技巧。

數學課本(mathematics textbook),數學學科教學用書。小學數學課本注意在加強基礎知識教學的同時,培養學生的計算能力、初步的邏輯思維能力和空間觀念,以及解決簡單實際問題的能力。中學數學課本包括代數、平面幾何、立體幾何等內容。

㈨ 七年級數學上冊知識點總結

七年級數學上冊知識點總結(通用8篇)
總結在一個時期、一個年度、一個階段對學習和工作生活等情況加以回顧和分析的一種書面材料,它可以促使我們思考,為此要我們寫一份總結。那麼如何把總結寫出新花樣呢?下面是小編為大家整理的七年級數學上冊知識點總結(通用8篇),歡迎大家分享。

七年級數學上冊知識點總結 篇1
數軸
1、數軸的概念
規定了原點,正方向,單位長度的直線叫做數軸。
注意:(1)數軸是一條向兩端無限延伸的直線;(2)原點、正方向、單位長度是數軸的三要素,三者缺一不
可;(3)同一數軸上的單位長度要統一;(4)數軸的三要素都是根據實際需要規定的。
2、數軸上的點與有理數的關系
(1)所有的有理數都可以用數軸上的點來表示,正有理數可用原點右邊的點表示,負有理數可用原點左邊的點表示,0用原點表示。
(2)所有的有理數都可以用數軸上的點表示出來,但數軸上的點不都表示有理數,也就是說,有理數與數軸上的點不是一一對應關系。(如,數軸上的點π不是有理數)
3、利用數軸表示兩數大小
(1)在數軸上數的大小比較,右邊的數總比左邊的數大;
(2)正數都大於0,負數都小於0,正數大於負數;
(3)兩個負數比較,距離原點遠的數比距離原點近的數小。
4、數軸上特殊的(小)數
(1)最小的自然數是0,無的自然數;
(2)最小的正整數是1,無的正整數;
(3)的負整數是-1,無最小的負整數
5、a可以表示什麼數
(1)a>0表示a是正數;反之,a是正數,則a>0;
(2)a
(3)a=0表示a是0;反之,a是0,,則a=0
七年級數學上冊知識點總結 篇2
第一章 有理數
(一)正負數
1、正數:大於0的數。
2、負數:小於0的數。
3、0即不是正數也不是負數。
4、正數大於0,負數小於0,正數大於負數。
(二)有理數
1、有理數:由整數和分數組成的數。包括:正整數、0、負整數,正分數、負分數。可以寫成兩個整數之比的形式。(無理數是不能寫成兩個整數之比的形式,它寫成小數形式,小數點後的數字是無限不循環的。如:π)
2、整數:正整數、0、負整數,統稱整數。
3、分數:正分數、負分數。
(三)數軸
1、數軸:用直線上的點表示數,這條直線叫做數軸。(畫一條直線,在直線上任取一點表示數0,這個零點叫做原點,規定直線上從原點向右或向上為正方向;選取適當的長度為單位長度,以便在數軸上取點。)
2、數軸的三要素:原點、正方向、單位長度。
3、相反數:只有符號不同的兩個數叫做互為相反數。0的相反數還是0。
4、絕對值:正數的絕對值是它本身,負數的絕對值是它的相反數;0的絕對值是0,兩個負數比較大小,絕對值大的反而小。
(四)有理數的加減法
1、先定符號,再算絕對值。
2、加法運演算法則:同號相加,取相同符號,並把絕對值相加。異號相加,取絕對值大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。一個數同0相加減,仍得這個數。
3、加法交換律:a+b= b+ a 兩個數相加,交換加數的位置,和不變。
4、加法結合律:(a+b)+ c = a +(b+ c )三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。
5、 ab = a +(b) 減去一個數,等於加這個數的相反數。
(五)有理數乘法(先定積的符號,再定積的大小)
1、同號得正,異號得負,並把絕對值相乘。任何數同0相乘,都得0。
2、乘積是1的兩個數互為倒數。
3、乘法交換律:ab= ba
4、乘法結合律:(ab)c = a (b c)
5、乘法分配律:a(b +c)= a b+ ac
(六)有理數除法
1、先將除法化成乘法,然後定符號,最後求結果。
2、除以一個不等於0的數,等於乘這個數的倒數。
3、兩數相除,同號得正,異號得負,並把絕對值相除,0除以任何一個不等於0的數,都得0。
(七)乘方
1、求n個相同因數的積的運算,叫做乘方。寫作an。(乘方的結果叫冪,a叫底數,n叫指數)
2、負數的奇數次冪是負數,負數的偶次冪是正數;0的任何正整數次冪都是0。
(八)有理數的加減乘除混合運演算法則
1、先乘方,再乘除,最後加減。
2、同級運算,從左到右進行。
3、如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行。
(九)科學記數法、近似數、有效數字。
第二章 整式
(一)整式
1、整式:單項式和多項式的統稱叫整式。
2、單項式:數與字母的乘積組成的式子叫單項式。單獨的一個數或一個字母也是單項式。
3、系數:一個單項式中,數字因數叫做這個單項式的系數。
4、次數:一個單項式中,所有字母的指數和叫做這個單項式的次數。
5、多項式:幾個單項式的和叫做多項式。
6、項:組成多項式的每個單項式叫做多項式的項。
7、常數項:不含字母的項叫做常數項。
8、多項式的次數:多項式中,次數最高的項的次數叫做這個多項式的次數。
9、同類項:多項式中,所含字母相同,並且相同字母的指數也相同的項叫做同類項。
10、合並同類項:把多項式中的同類項合並成一項,叫做合並同類項。
(二)整式加減
整式加減運算時,如果遇到括弧先去括弧,再合並同類項。
1、去括弧:一般地,幾個整式相加減,如果有括弧就先去括弧,然後再合並同類項。
如果括弧外的因數是正數,去括弧後原括弧內各項的符號與原來的符號相同。如果括弧外的因數是負數,去括弧後原括弧內各項的符號與原來的符號相反。
2、合並同類項:把多項式中的同類項合並成一項,叫做合並同類項。
合並同類項後,所得項的系數是合並前各同類項的系數的和,且字母部分不變
第三章 一元一次方程
分析實際問題中的數量關系,利用其中的相等關系列出方程,是用數學解決實際問題的一種方法。
(一)方程:先設字母表示未知數,然後根據相等關系,寫出含有未知數的等式叫方程。
(二)一元一次方程:
1、一元一次方程:方程里只含有一個未知數(元),未知數的次數都是1,這樣的方程叫做一元一次方程。
2、解:求出的方程中未知數的值叫做方程的解。
(二)等式的性質
1、等式兩邊加(或減)同一個數(或式子),結果仍相等。
如果a= b,那麼a± c= b± c
2、等式兩邊乘同一個數,或除以同一個不為0的數,結果仍相等。
如果a= b,那麼a c= b c;
如果a= b,(c0),那麼a ?Mc = b ?M c。
(三)解方程的步驟
解一元一次方程的步驟:去分母、去括弧、移項、合並同類項,未知數系數化為1。
1、去分母:把系數化成整數。
2、去括弧
3、移項:把等式一邊的某項變號後移到另一邊。
4、合並同類項
5、系數化為1
第四章 圖形認識初步
一、圖形認識初步
1、幾何圖形:把從實物中抽象出來的各種圖形的統稱。
2、平面圖形:有些幾何圖形的各部分都在同一平面內,這樣的圖形是平面圖形。
3、立體圖形:有些幾何圖形的各部分不都在同一平面內,這樣的圖形是立體圖形。
4、展開圖:有些立體圖形是由一些平面圖形圍成的,將它們的表面適當剪開,可以展開成平面圖形,這樣的平面圖形稱為相應立體圖形的展開圖。
5、點,線,面,體
1圖形是由點,線,面構成的。
2線與線相交得點,面與面相交得線。
3點動成線,線動成面,面動成體。
二、直線、線段、射線
1、線段:線段有兩個端點。
2、射線:將線段向一個方向無限延長就形成了射線。射線只有一個端點。
3、直線:將線段的兩端無限延長就形成了直線。直線沒有端點。
4、兩點確定一條直線:經過兩點有一條直線,並且只有一條直線。
5、相交:兩條直線有一個公共點時,稱這兩條直線相交。
6、兩條直線相交有一個公共點,這個公共點叫交點。
7、中點:M點把線段AB分成相等的兩條線段AM與MB,點M叫做線段AB的中點。
8、線段的性質:兩點的所有連線中,線段最短。(兩點之間,線段最短)
9、距離:連接兩點間的線段的長度,叫做這兩點的距離。
三、角
1、角:有公共端點的兩條射線組成的圖形叫做角。
2、角的度量單位:度、分、秒。
3、角的度量與表示:
1角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。
2一度的1/60是一分,一分的1/60是一秒。角的度、分、秒是60進制。
4、角的比較:
1角也可以看成是由一條射線繞著他的端點旋轉而成的。
2平角和周角:一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續旋轉,當他又和始邊重合時,所成的角叫做周角。平角等於180度。周角等於360度。直角等於90度。
3平分線:從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
4工具:量角器、三角尺、經緯儀。
5、餘角和補角
1餘角:兩個角的和等於90度,這兩個角互為餘角。即其中每一個是另一個角的餘角。
2補角:兩個角的和等於180度,這兩個角互為補角。即其中一個是另一個角的補角。
3補角的性質:等角的補角相等。
4餘角的性質:等角的餘角相等。
七年級數學上冊知識點總結 篇3
1、用加、減、乘(乘方)、除等運算符號把數或表示數的字母連接而成的式子,叫做代數式。(注:單獨一個數字或字母也是代數式)
2、代數式的寫法:數學與字母相乘時,「×」號省略,數字寫在字母前;字母與字母相乘時,相同字母寫成冪的形式;數字與數字相乘時,「×」號不能省略;式中出現除法時,一般寫成分數形式。式中出現帶分數時,一般寫成假分數形式。
3、分段問題書寫代數式時要分段考慮,有單位時要考慮是否要();如:電費、水費、計程車、商店優惠。
4、單項式:由數字和字母乘積組成的式子。單獨一個數或一個字母也是單項式、因此,判斷代數式是否是單項式,關鍵要看代數式中數與字母是否是乘積關系,若1分母中不含有字母,2式子中含有加、減運算關系,也不是單項式、
單項式的系數:是指單項式中的數字因數;(不要漏負號和分母)
單項數的次數:是指單項式中所有字母的指數的和、(注意指數1)
5、多項式:幾個單項式的和。判斷代數式是否是多項式,關鍵要看代數式中的每一項是否是單項式、每個單項式稱項,(其中不含字母的項叫常數項)多項式的次數是指多項式里次數最高項的次數(選代表);多項式的項是指在多項式中每一個單項式、特別注意多項式的項包括它前面的性質符號、它們都是用字母表示數或列式表示數量關系。注意單項式和多項式的每一項都包括它前面的符號。