當前位置:首頁 » 基礎知識 » 職高數學高一上冊書的知識點
擴展閱讀
沂源縣教育局是什麼 2025-01-18 09:47:37
為什麼動漫女生特別美 2025-01-18 09:46:12

職高數學高一上冊書的知識點

發布時間: 2022-07-19 13:11:13

❶ 職高數學各章節知識點匯總

一、冪函數:

1、定義形如y=xα的函數叫冪函數,其中α為常數,在中學階段只研究α為有理數的情形

二、指數函數和對數函數:

1、定義:指數函數,y=ax(a>0,且a≠1),注意與冪函數的區別。對數函數y=logax(a>0,且a≠1)。指數函數y=ax與對數函數y=logax互為反函數.

2、指數函數:y=ax(a>0,且a≠1)與對數函數y=logax(a>0,且a≠1)的圖象和性質。

三、指數方程和對數方程:

指數方程和對數方程屬於超越方程,在中學階段只要求會解一些簡單的特殊類型指數方程和對數方程,基本思想是將它們化成代數方程來解。

四、數列的概念:

1、數列定義:按一定次序排列的一列數叫做數列; 數列中的每個數都叫這個數列的項。記作na,在數列第一個位置的項叫第1項(或首項)。在第二個位置的叫第2項,……,序號為n 的項叫第n項(也叫通項)記作na。

五、函數的表示方法:

表示函數的方法,常用的有解析法、列表法、圖象法三種。

解析法:就是用數學表達式表示兩個變數之間的對應關系。

列表法:就是列出表格來表示兩個變數之間的對應關系。

圖象法:就是用圖象表示兩個變數之間的對應關系。

六、函數的圖象:

1、確定函數的定義域;

2、化解函數解析式;

3、討論函數的性質(奇偶性、單調性);

4、畫出函數的圖象。

七、利用基本函數圖象的變換作圖:

要准確記憶一次函數、二次函數、反比例函數、指數函數、對數函數、冪函數、三角函數等各種基本初等函數的圖象。

❷ 職高高一上半學期所有數學公式

一)兩角和差公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA �
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
二)用以上公式可推出下列二倍角公式
tan2A=2tanA/[1-(tanA)^2]
cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2
(上面這個餘弦的很重要)
sin2A=2sinA*cosA
三)半形的只需記住這個:
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)
四)用二倍角中的餘弦可推出降冪公式
(sinA)^2=(1-cos2A)/2
(cosA)^2=(1+cos2A)/2
五)用以上降冪公式可推出以下常用的化簡公式
1-cosA=sin^(A/2)*2
1-sinA=cos^(A/2)*2

一、集合與簡易邏輯:
一、理解集合中的有關概念
(1)集合中元素的特徵: 確定性 , 互異性 , 無序性 。
集合元素的互異性:如: , ,求 ;
(2)集合與元素的關系用符號 , 表示。
(3)常用數集的符號表示:自然數集 ;正整數集 、 ;整數集 ;有理數集 、實數集 。
(4)集合的表示法: 列舉法 , 描述法 , 韋恩圖 。
注意:區分集合中元素的形式:如: ; ; ; ; ;

(5)空集是指不含任何元素的集合。( 、 和 的區別;0與三者間的關系)
空集是任何集合的子集,是任何非空集合的真子集。
注意:條件為 ,在討論的時候不要遺忘了 的情況
二、函數的三要素: , , 。
相同函數的判斷方法:① ;② (兩點必須同時具備)
(1)函數解析式的求法:
①定義法(拼湊):②換元法:③待定系數法:④賦值法:
(2)函數定義域的求法:
① ,則 ; ② 則 ;
③ ,則 ; ④如: ,則 ;
⑤含參問題的定義域要分類討論;
如:已知函數 的定義域是 ,求 的定義域。
⑥對於實際問題,在求出函數解析式後;必須求出其定義域,此時的定義域要根據實際意義來確定。如:已知扇形的周長為20,半徑為 ,扇形面積為 ,則 ;定義域為 。
(3)函數值域的求法:
①配方法:轉化為二次函數,利用二次函數的特徵來求值;常轉化為型如: 的形式;
②逆求法(反求法):通過反解,用 來表示 ,再由 的取值范圍,通過解不等式,得出 的取值范圍;常用來解,型如: ;
④換元法:通過變數代換轉化為能求值域的函數,化歸思想;
⑤三角有界法:轉化為只含正弦、餘弦的函數,運用三角函數有界性來求值域;
⑥基本不等式法:轉化成型如: ,利用平均值不等式公式來求值域;
⑦單調性法:函數為單調函數,可根據函數的單調性求值域。
⑧數形結合:根據函數的幾何圖形,利用數型結合的方法來求值域。
求下列函數的值域:① (2種方法);
② (2種方法);③ (2種方法);
三、函數的性質:
函數的單調性、奇偶性、周期性
單調性:定義:注意定義是相對與某個具體的區間而言。
判定方法有:定義法(作差比較和作商比較)
導數法(適用於多項式函數)
復合函數法和圖像法。
應用:比較大小,證明不等式,解不等式。
奇偶性:定義:注意區間是否關於原點對稱,比較f(x) 與f(-x)的關系。f(x) -f(-x)=0 f(x) =f(-x) f(x)為偶函數;
f(x)+f(-x)=0 f(x) =-f(-x) f(x)為奇函數。
判別方法:定義法, 圖像法 ,復合函數法
應用:把函數值進行轉化求解。
周期性:定義:若函數f(x)對定義域內的任意x滿足:f(x+T)=f(x),則T為函數f(x)的周期。
其他:若函數f(x)對定義域內的任意x滿足:f(x+a)=f(x-a),則2a為函數f(x)的周期.
應用:求函數值和某個區間上的函數解析式
平移變換 y=f(x)→y=f(x+a),y=f(x)+b
注意:(ⅰ)有系數,要先提取系數。如:把函數y=f(2x)經過 平移得到函數y=f(2x+4)的圖象。
(ⅱ)會結合向量的平移,理解按照向量 (m,n)平移的意義。
對稱變換 y=f(x)→y=f(-x),關於y軸對稱
y=f(x)→y=-f(x) ,關於x軸對稱
y=f(x)→y=f|x|,把x軸上方的圖象保留,x軸下方的圖象關於x軸對稱
y=f(x)→y=|f(x)|把y軸右邊的圖象保留,然後將y軸右邊部分關於y軸對稱。(注意:它是一個偶函數)
伸縮變換:y=f(x)→y=f(ωx),
y=f(x)→y=Af(ωx+φ)具體參照三角函數的圖象變換。
一個重要結論:若f(a-x)=f(a+x),則函數y=f(x)的圖像關於直線x=a對稱 給分

❸ 高一數學知識點有哪些

高一數學知識點如下:

1、如果一條直線的兩個點在一個平面內,那麼這條直線上的所有點都在這個平面內。

2、元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}。

3、偶次方根的被開方數不小於零,零取零次方沒有意義。

4、換元法:利用換元法將函數轉化為二次函數求值域,適合根式內外皆為一次式。

5、真子集:如果A⊆B,且A≠B那就說集合A是集合B的真子集,記作AB(或BA)。

❹ 高一數學知識點總結

高一數學知識點總結(合集15篇)
總結是對過去一定時期的工作、學習或思想情況進行回顧、分析,並做出客觀評價的書面材料,它可以明確下一步的工作方向,少走彎路,少犯錯誤,提高工作效益,不如靜下心來好好寫寫總結吧。那麼如何把總結寫出新花樣呢?下面是小編整理的高一數學知識點總結,僅供參考,歡迎大家閱讀。

高一數學知識點總結1
集合的有關概念
1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素
注意:1集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。
2集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。
3集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件
2)集合的表示方法:常用的有列舉法、描述法和圖文法
3)集合的分類:有限集,無限集,空集。
4)常用數集:N,Z,Q,R,N
子集、交集、並集、補集、空集、全集等概念
1)子集:若對x∈A都有x∈B,則AB(或AB);
2)真子集:AB且存在x0∈B但x0A;記為AB(或,且)
3)交集:A∩B={x|x∈A且x∈B}
4)並集:A∪B={x|x∈A或x∈B}
5)補集:CUA={x|xA但x∈U}
注意:A,若A≠?,則?A;
若且,則A=B(等集)
集合與元素
掌握有關的術語和符號,特別要注意以下的符號:(1)與、?的區別;(2)與的區別;(3)與的區別。
子集的幾個等價關系
1A∩B=AAB;2A∪B=BAB;3ABCuACuB;
4A∩CuB=空集CuAB;5CuA∪B=IAB。
交、並集運算的性質
1A∩A=A,A∩?=?,A∩B=B∩A;2A∪A=A,A∪?=A,A∪B=B∪A;
3Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;
有限子集的個數:
設集合A的元素個數是n,則A有2n個子集,2n-1個非空子集,2n-2個非空真子集。
練習題:
已知集合M={x|x=m+,m∈Z},N={x|x=,n∈Z},P={x|x=,p∈Z},則M,N,P滿足關系()
A)M=NPB)MN=PC)MNPD)NPM
分析一:從判斷元素的共性與區別入手。
解答一:對於集合M:{x|x=,m∈Z};對於集合N:{x|x=,n∈Z}
對於集合P:{x|x=,p∈Z},由於3(n-1)+1和3p+1都表示被3除餘1的數,而6m+1表示被6除餘1的數,所以MN=P,故選B。
高一數學知識點總結2
圓的方程定義:
圓的標准方程(x―a)2+(y―b)2=r2中,有三個參數a、b、r,即圓心坐標為(a,b),只要求出a、b、r,這時圓的方程就被確定,因此確定圓方程,須三個獨立條件,其中圓心坐標是圓的定位條件,半徑是圓的定形條件。
直線和圓的位置關系:
1、直線和圓位置關系的判定方法一是方程的觀點,即把圓的方程和直線的方程聯立成方程組,利用判別式Δ來討論位置關系。
1Δ>0,直線和圓相交、2Δ=0,直線和圓相切、3Δ
方法二是幾何的觀點,即把圓心到直線的距離d和半徑R的大小加以比較。
1dR,直線和圓相離、
2、直線和圓相切,這類問題主要是求圓的切線方程、求圓的切線方程主要可分為已知斜率k或已知直線上一點兩種情況,而已知直線上一點又可分為已知圓上一點和圓外一點兩種情況。
3、直線和圓相交,這類問題主要是求弦長以及弦的中點問題。
切線的性質
(1)圓心到切線的距離等於圓的半徑;
(2)過切點的半徑垂直於切線;
(3)經過圓心,與切線垂直的直線必經過切點;
(4)經過切點,與切線垂直的直線必經過圓心;
當一條直線滿足
(1)過圓心;
(2)過切點;
(3)垂直於切線三個性質中的兩個時,第三個性質也滿足。
切線的判定定理
經過半徑的外端點並且垂直於這條半徑的直線是圓的切線。
切線長定理
從圓外一點作圓的兩條切線,兩切線長相等,圓心與這一點的連線平分兩條切線的夾角。
高一數學知識點總結3
集合的運算
運算類型交 集並 集補 集
定義域 R定義域 R
值域>0值域>0
在R上單調遞增在R上單調遞減
非奇非偶函數非奇非偶函數
函數圖象都過定點(0,1)函數圖象都過定點(0,1)
注意:利用函數的單調性,結合圖象還可以看出:
(1)在[a,b]上, 值域是 或 ;
(2)若 ,則 ; 取遍所有正數當且僅當 ;
(3)對於指數函數 ,總有 ;
二、對數函數
(一)對數
1.對數的概念:
一般地,如果 ,那麼數 叫做以 為底 的對數,記作: ( ― 底數, ― 真數, ― 對數式)
說明:○1 注意底數的限制 ,且 ;
○2 ;
○3 注意對數的書寫格式.
兩個重要對數:
○1 常用對數:以10為底的對數 ;
○2 自然對數:以無理數 為底的對數的對數 .
指數式與對數式的互化
冪值 真數
= N = b
底數
指數 對數
(二)對數的運算性質
如果 ,且 , , ,那麼:
○1 + ;
○2 - ;
○3 .
注意:換底公式: ( ,且 ; ,且 ; ).
利用換底公式推導下面的結論:(1) ;(2) .
(3)、重要的公式 1、負數與零沒有對數; 2、 , 3、對數恆等式
(二)對數函數
1、對數函數的概念:函數 ,且 叫做對數函數,其中 是自變數,函數的定義域是(0,+∞).
注意:○1 對數函數的定義與指數函數類似,都是形式定義,注意辨別。如: , 都不是對數函數,而只能稱其為對數型函數.
○2 對數函數對底數的限制: ,且 .
2、對數函數的性質:
a>10
定義域x>0定義域x>0
值域為R值域為R
在R上遞增在R上遞減
函數圖象都過定點(1,0)函數圖象都過定點(1,0)
(三)冪函數
1、冪函數定義:一般地,形如 的函數稱為冪函數,其中 為常數.
2、冪函數性質歸納.
(1)所有的冪函數在(0,+∞)都有定義並且圖象都過點(1,1);
(2) 時,冪函數的圖象通過原點,並且在區間 上是增函數.特別地,當 時,冪函數的圖象下凸;當 時,冪函數的圖象上凸;
(3) 時,冪函數的圖象在區間 上是減函數.在第一象限內,當 從右邊趨向原點時,圖象在 軸右方無限地逼近 軸正半軸,當 趨於 時,圖象在 軸上方無限地逼近 軸正半軸.
第四章 函數的應用
一、方程的根與函數的零點
1、函數零點的概念:對於函數 ,把使 成立的實數 叫做函數 的零點。
2、函數零點的意義:函數 的零點就是方程 實數根,亦即函數 的圖象與 軸交點的橫坐標。
即:方程 有實數根 函數 的圖象與 軸有交點 函數 有零點.
3、函數零點的求法:
○1 (代數法)求方程 的實數根;
○2 (幾何法)對於不能用求根公式的方程,可以將它與函數 的圖象聯系起來,並利用函數的性質找出零點.
4、二次函數的零點:
二次函數 .
(1)△>0,方程 有兩不等實根,二次函數的圖象與 軸有兩個交點,二次函數有兩個零點.
(2)△=0,方程 有兩相等實根,二次函數的圖象與 軸有一個交點,二次函數有一個二重零點或二階零點.
(3)△
5.函數的模型

❺ 高一數學主要知識點有哪些

第一章 集合與函數概念
1.集合的概念及其表示意思;2.集合間的關系;3.函數的概念及其表示;4.函數性質(單調性、最值、奇偶性)

第二章 基本初等函數(I)
一.指數與對數
1.根式;2.指數冪的擴充;3.對數;4.根式、指數式、對數式之間的關系;5.對數運算性質與指數運算性質
二.指數函數與對數函數
1.指數函數與對數函數的圖像與性質;2.指數函數y=ax的關系
三.冪函數 (定義、圖像、性質)

第三章 函數的應用
一.方程的實數解與函數的零點
二.二分法
三.幾類不同增長的函數模型
四.函數模型的應用

必修2知識點
一、直線與方程
(1)直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°
(2)直線的斜率
①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。
當時,; 當時,; 當時,不存在。
②過兩點的直線的斜率公式:
注意下面四點:(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無關;(3)以後求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;
(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。
(3)直線方程
①點斜式:直線斜率k,且過點
注意:當直線的斜率為0°時,k=0,直線的方程是y=y1。
當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等於x1,所以它的方程是x=x1。
②斜截式:,直線斜率為k,直線在y軸上的截距為b
③兩點式:()直線兩點,
④截矩式:
其中直線與軸交於點,與軸交於點,即與軸、軸的截距分別為。
⑤一般式:(A,B不全為0)
注意:各式的適用范圍 特殊的方程如:
平行於x軸的直線:(b為常數); 平行於y軸的直線:(a為常數);
(5)直線系方程:即具有某一共同性質的直線
(一)平行直線系
平行於已知直線(是不全為0的常數)的直線系:(C為常數)
(二)垂直直線系
垂直於已知直線(是不全為0的常數)的直線系:(C為常數)
(三)過定點的直線系
(ⅰ)斜率為k的直線系:,直線過定點;
(ⅱ)過兩條直線,的交點的直線系方程為
(為參數),其中直線不在直線系中。
(6)兩直線平行與垂直
當,時,

注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否。
(7)兩條直線的交點
相交
交點坐標即方程組的一組解。
方程組無解 ; 方程組有無數解與重合
(8)兩點間距離公式:設是平面直角坐標系中的兩個點,

(9)點到直線距離公式:一點到直線的距離
(10)兩平行直線距離公式
在任一直線上任取一點,再轉化為點到直線的距離進行求解。
二、圓的方程
1、圓的定義:平面內到一定點的距離等於定長的點的集合叫圓,定點為圓心,定長為圓的半徑。
2、圓的方程
(1)標准方程,圓心,半徑為r;
(2)一般方程
當時,方程表示圓,此時圓心為,半徑為
當時,表示一個點; 當時,方程不表示任何圖形。
(3)求圓方程的方法:
一般都採用待定系數法:先設後求。確定一個圓需要三個獨立條件,若利用圓的標准方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圓的幾何性質:如弦的中垂線必經過原點,以此來確定圓心的位置。
3、直線與圓的位置關系:
直線與圓的位置關系有相離,相切,相交三種情況:
(1)設直線,圓,圓心到l的距離為,則有;;
(2)過圓外一點的切線:①k不存在,驗證是否成立②k存在,設點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】
(3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)= r2
4、圓與圓的位置關系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。
設圓,
兩圓的位置關系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。
當時兩圓外離,此時有公切線四條;
當時兩圓外切,連心線過切點,有外公切線兩條,內公切線一條;
當時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;
當時,兩圓內切,連心線經過切點,只有一條公切線;
當時,兩圓內含; 當時,為同心圓。
注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線
圓的輔助線一般為連圓心與切線或者連圓心與弦中點
三、立體幾何初步
1、柱、錐、台、球的結構特徵
(1)稜柱:
幾何特徵:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行於底面的截面是與底面全等的多邊形。
(2)棱錐
幾何特徵:側面、對角面都是三角形;平行於底面的截面與底面相似,其相似比等於頂點到截面距離與高的比的平方。
(3)稜台:
幾何特徵:①上下底面是相似的平行多邊形 ②側面是梯形 ③側棱交於原棱錐的頂點
(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉,其餘三邊旋轉所成
幾何特徵:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。
(5)圓錐:定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成
幾何特徵:①底面是一個圓;②母線交於圓錐的頂點;③側面展開圖是一個扇形。
(6)圓台:定義:以直角梯形的垂直與底邊的腰為旋轉軸,旋轉一周所成
幾何特徵:①上下底面是兩個圓;②側面母線交於原圓錐的頂點;③側面展開圖是一個弓形。
(7)球體:定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體
幾何特徵:①球的截面是圓;②球面上任意一點到球心的距離等於半徑。
2、空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向後面正投影);側視圖(從左向右)、
俯視圖(從上向下)
註:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側視圖反映了物體的高度和寬度。
3、空間幾何體的直觀圖——斜二測畫法
斜二測畫法特點:①原來與x軸平行的線段仍然與x平行且長度不變;
②原來與y軸平行的線段仍然與y平行,長度為原來的一半。
4、柱體、錐體、台體的表面積與體積
(1)幾何體的表面積為幾何體各個面的面積的和。
(2)特殊幾何體表面積公式(c為底面周長,h為高,為斜高,l為母線)

(3)柱體、錐體、台體的體積公式

(4)球體的表面積和體積公式:V= ; S=
4、空間點、直線、平面的位置關系
公理1:如果一條直線的兩點在一個平面內,那麼這條直線是所有的點都在這個平面內。
應用: 判斷直線是否在平面內
用符號語言表示公理1:
公理2:如果兩個不重合的平面有一個公共點,那麼它們有且只有一條過該點的公共直線
符號:平面α和β相交,交線是a,記作α∩β=a。
符號語言:
公理2的作用:
①它是判定兩個平面相交的方法。
②它說明兩個平面的交線與兩個平面公共點之間的關系:交線必過公共點。
③它可以判斷點在直線上,即證若干個點共線的重要依據。
公理3:經過不在同一條直線上的三點,有且只有一個平面。
推論:一直線和直線外一點確定一平面;兩相交直線確定一平面;兩平行直線確定一平面。
公理3及其推論作用:①它是空間內確定平面的依據 ②它是證明平面重合的依據
公理4:平行於同一條直線的兩條直線互相平行
空間直線與直線之間的位置關系
① 異面直線定義:不同在任何一個平面內的兩條直線
② 異面直線性質:既不平行,又不相交。
③ 異面直線判定:過平面外一點與平面內一點的直線與平面內不過該店的直線是異面直線
④ 異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直。
求異面直線所成角步驟:
A、利用定義構造角,可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點選在特殊的位置上。 B、證明作出的角即為所求角 C、利用三角形來求角
(7)等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,那麼這兩角相等或互補。
(8)空間直線與平面之間的位置關系
直線在平面內——有無數個公共點.

三種位置關系的符號表示:aα a∩α=A a‖α
(9)平面與平面之間的位置關系:平行——沒有公共點;α‖β
相交——有一條公共直線。α∩β=b
5、空間中的平行問題
(1)直線與平面平行的判定及其性質
線面平行的判定定理:平面外一條直線與此平面內一條直線平行,則該直線與此平面平行。
線線平行線面平行
線面平行的性質定理:如果一條直線和一個平面平行,經過這條直線的平面和這個平面相交,
那麼這條直線和交線平行。線面平行線線平行
(2)平面與平面平行的判定及其性質
兩個平面平行的判定定理
(1)如果一個平面內的兩條相交直線都平行於另一個平面,那麼這兩個平面平行
(線面平行→面面平行),
(2)如果在兩個平面內,各有兩組相交直線對應平行,那麼這兩個平面平行。
(線線平行→面面平行),
(3)垂直於同一條直線的兩個平面平行,
兩個平面平行的性質定理
(1)如果兩個平面平行,那麼某一個平面內的直線與另一個平面平行。(面面平行→線面平行)
(2)如果兩個平行平面都和第三個平面相交,那麼它們的交線平行。(面面平行→線線平行)
7、空間中的垂直問題
(1)線線、面面、線面垂直的定義
①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直。
②線面垂直:如果一條直線和一個平面內的任何一條直線垂直,就說這條直線和這個平面垂直。
③平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直。
(2)垂直關系的判定和性質定理
①線面垂直判定定理和性質定理
判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那麼這條直線垂直這個平面。
性質定理:如果兩條直線同垂直於一個平面,那麼這兩條直線平行。
②面面垂直的判定定理和性質定理
判定定理:如果一個平面經過另一個平面的一條垂線,那麼這兩個平面互相垂直。
性質定理:如果兩個平面互相垂直,那麼在一個平面內垂直於他們的交線的直線垂直於另一個平面。
9、空間角問題
(1)直線與直線所成的角
①兩平行直線所成的角:規定為。
②兩條相交直線所成的角:兩條直線相交其中不大於直角的角,叫這兩條直線所成的角。
③兩條異面直線所成的角:過空間任意一點O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大於直角的角叫做兩條異面直線所成的角。
(2)直線和平面所成的角
①平面的平行線與平面所成的角:規定為。 ②平面的垂線與平面所成的角:規定為。
③平面的斜線與平面所成的角:平面的一條斜線和它在平面內的射影所成的銳角,叫做這條直線和這個平面所成的角。
求斜線與平面所成角的思路類似於求異面直線所成角:「一作,二證,三計算」。
在「作角」時依定義關鍵作射影,由射影定義知關鍵在於斜線上一點到面的垂線,
在解題時,注意挖掘題設中兩個主要信息:(1)斜線上一點到面的垂線;(2)過斜線上的一點或過斜線的平面與已知面垂直,由面面垂直性質易得垂線。
(3)二面角和二面角的平面角
①二面角的定義:從一條直線出發的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面。
②二面角的平面角:以二面角的棱上任意一點為頂點,在兩個面內分別作垂直於棱的兩條射線,這兩條射線所成的角叫二面角的平面角。
③直二面角:平面角是直角的二面角叫直二面角。
兩相交平面如果所組成的二面角是直二面角,那麼這兩個平面垂直;反過來,如果兩個平面垂直,那麼所成的二面角為直二面角
④求二面角的方法
定義法:在棱上選擇有關點,過這個點分別在兩個面內作垂直於棱的射線得到平面角
垂面法:已知二面角內一點到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角
同角三角函數間的基本關系式:
·平方關系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)
·積的關系:sinα=tanα*cosα cosα=cotα*sinαtanα=sinα*secα cotα=cosα*cscαsecα=tanα*cscα cscα=secα*cotα
·倒數關系:tanα·cotα=1sinα·cscα=1cosα·secα=1 三角函數恆等變形公式·兩角和與差的三角函數:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
·輔助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)
·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]
·三倍角公式:sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosα
·半形公式:sin(α/2)=正負√((1-cosα)/2)cos(α/2)=正負√((1+cosα)/2)tan(α/2)=正負√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
·降冪公式sin^2(α)=(1-cos(2α))/2cos^2(α)=(1+cos(2α))/2tan^2(α)=(1-cos(2α))/(1+cos(2α))
·萬能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]
·積化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
·和差化積公式: sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

必修5:

等差:an=a1+(n-1)d Sn=a1n+n(n-1)/2*d =n(a1+an)/2
等比:an=a1*q^n Sn=A1(1-q^n)/(1-q) =(a1-a1q^n)/(1-q) =(a1-an*q)/(1-q) =a1/(1-q)-a1/(1-q)*q^n ( 即A-Aq^n) (前提:q≠1)答案補充
正弦定理:a/sinA=b/sinB=c/sinC=2R(外接圓直徑)餘弦定理:a^2=b^2+c^2-2bc*conA b^2=a^2+c^2-2ac*conB c^2=b^2+c^2-2ab*conC cosA=b^2+c^2-a^2/abc cosB=a^2+c^2-b^2/2ac cosC=a^2+b^2-c^2/2ab
答案補充
基本不等式:根號下ab≤a+b/2(a≥0,b≥0)如果a,b是正數,那麼根號下ab≤a+b/2(當且僅當a=b時取"=")

❻ 數學高一上學期重點知識點(大綱)

高一上學期的數學內容並不多,但是難度不低。難度並不在於知識點的深度和綜合能力,而在於從初中相對具體形象的數學學習一下進入高中抽象的,與生活似乎關系不大的學習,很多同學表現出非常大不適應。因此,如果覺得高一數學「難」,復習的重點,應當放在分析為什麼自己覺得學習過的知識點「難」上。

難點一:抽象函數

F規則的含義雖然看起來簡單,但如果理解不深刻,對於後面的解題有很大的影響。解決抽象函數難點的思路主要有這樣兩條:

(1) 將抽象函數的內容與具體函數的性質結合起來。抽象函數作為理解函數的一個上位的要求,對於所有的具體函數都具有指導意義。高一學習的指數,對數和冪三種函數的具體性質,都是抽象函數性質在具體函數中的表現。函數的定義域,值域,單調性,奇偶性,這些內容既是抽象函數的核心內容,又是具體函數具體性質的表現。結合起來記憶,效果更好。

(2) 所有和抽象函數相關的綜合問題,一定首先想辦法將抽象函數的條件化為具體條件,轉化的方法,就是利用抽象函數的性質。很多綜合題中都會出現抽象函數的條件,對於這種題目,首先要解決的就是將這些條件中的f去掉。比如f(a)<f(b),保留f,無論a與b如何簡單,不利用單調性條件去掉f,問題都解決不了。

難點二:三角函數

這一部分的重點是一定要從初中銳角三角函數的定義中跳出來。在教學中,我注意到有些學生仍然在遇到三角函數題目的時候畫直角三角形協助理解,這是十分危險的,也是我們所不提倡的。三角函數的定義在引入了實數角和弧度制之後,已經發生了革命性的變化,sinA中的A不一定是一個銳角,也不一定是一個鈍角,而是一個實數——弧度制的角。有了這樣一個思維上的飛躍,三角函數就不再是三角形的一個附屬產品(初中三角函數很多時候依附於相似三角形),而是一個具有獨立意義的函數表現形式。

既然三角函數作為一種函數意義的理解,那麼,它的知識結構就可以完全和函數一章聯系起來,函數的精髓,就在於圖象,有了圖象,就有了所有的性質。對於三角函數,除了圖象,單位圓作為輔助手段,也是非常有效——就好像配方在二次函數中應用廣泛是一個道理。

三角恆等變形部分,並無太多訣竅,從教學中可以看出,學生聽懂公式都不難,應用起來比較熟練的都是那些做題比較多的同學。題目做到一定程度,其實很容易發現,高一考察的三角恆等只有不多的幾種題型,在課程與復習中,我們也會注重給學生總結三角恆等變形的「統一論」,把握住降次,輔助角和萬能公式這些關鍵方法,一般的三角恆等迎刃而解。關鍵是,一定要多做題。

難點三:向量部分

這部分其實是這學期最簡單的部分。簡單的原因是,以前從來沒有學過,初次接觸,考試不會太難。這部分的復習也最為輕松——圍繞向量的幾何表示,代數表示和坐標表示理解向量的各種運演算法則。

難點四:綜合題型

壓軸題基本上,都是以函數一章作為最核心的知識載體,中間摻雜向量和三角的運算。解決這樣的題目,方法幾乎是固定的,那就是首先利用抽象函數性質,將帶有f的條件化為不帶有f的條件,然後利用三角與向量的運算化簡或證明。非壓軸題出題方法可能更自由,但是綜合性往往沒有太強,仍然屬於各個板塊內的綜合。

❼ 職高高一數學有哪些知識點

主要看有理數集合,二次函數以及不等式

❽ 高一數學知識點有哪些

1、集合(包括:集合與幾何的表示方法;集合之間的關系與運算)

2、函數(函數的表示方法;單調性與奇偶性;一次函數和二次函數;函數的應用與方程)

3、基本初等函數(指數與指數函數;對數與對數函數;冪函數及函數的應用)

4、數列:這也是個比較重要的題型,做體的時候要有整體思想,整體代換,等比等差要分開來,也要注意聯系,這樣才能做好,注意觀察數列的形式判斷是什麼數列,還要掌握求數列通向公式的幾種方法,和求和公式,求和方法,比如裂項相消,錯位相減,公式法,分組求和法等等。

(8)職高數學高一上冊書的知識點擴展閱讀:

三角函數是函數,象限符號坐標注。函數圖象單位圓,周期奇偶增減現。

同角關系很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割

中心記上數字1,連結頂點三角形;向下三角平方和,倒數關系是對角,

頂點任意一函數,等於後面兩根除。誘導公式就是好,負化正後大化小,

變成銳角好查表,化簡證明少不了。二的一半整數倍,奇數化余偶不變,

將其後者視銳角,符號原來函數判。兩角和的餘弦值,化為單角好求值,

❾ 高一上學期數學重點知識點有哪些

高一上學期數學重點知識點有如下:

一、圓錐曲線的方程

1、橢圓:+=1(a>b>0)或+=1(a>b>0)(其中,a2=b2+c2)。

2、雙曲線:-=1(a>0,b>0)或-=1(a>0,b>0)(其中,c2=a2+b2)。

3、拋物線:y2=±2px(p>0),x2=±2py(p>0)。

二、函數奇偶性

1、如果對於函數定義域內的任意一個x,都有f(-x)=-f(x),那麼函數f(x)就叫做奇函數。

2、如果對於函數定義域內的任意一個x,都有f(x)=f(-x),那麼函數f(x)就叫做偶函數。

三、求函數值域的方法

1、直接法:從自變數x的范圍出發,推出y=f(x)的取值范圍,適合於簡單的復合函數。

2、換元法:利用換元法將函數轉化為二次函數求值域,適合根式內外皆為一次式。

四、二次函數的零點

1、△>0,方程有兩不等實根,二次函數的圖象與軸有兩個交點,二次函數有兩個零點。

2、△=0,方程有兩相等實根(二重根),二次函數的圖象與軸有一個交點,二次函數有一個二重零點或二階零點。

3、△<0,方程無實根,二次函數的圖象與軸無交點,二次函數無零點。

五、求函數定義域的主要依據

1、分式的分母不為零。

2、偶次方根的被開方數不小於零,零取零次方沒有意義。

3、對數函數的真數必須大於零。

❿ 高一數學知識總結

高考數學總復習精品資料---高中數學解題小結大匯總
熟悉這些解題小結論,啟迪解題思路、探求解題佳徑,總結解題方法,防止解題易誤點的產生,對提升高考數學成績將會起到立竿見影的效果。
一、集合與簡易邏輯
1.集合的元素具有無序性和互異性.
2.對集合 , 時,你是否注意到「極端」情況: 或 ;求集合的子集時是否注意到 是任何集合的子集、 是任何非空集合的真子集.
3.對於含有 個元素的有限集合 ,其子集、真子集、非空子集、非空真子集的個數依次為
4.「交的補等於補的並,即 」;「並的補等於補的交,即 」.
5.判斷命題的真假
關鍵是「抓住關聯字詞」;注意:「不『或』即『且』,不『且』即『或』」.
6.「或命題」的真假特點是「一真即真,要假全假」;「且命題」的真假特點是「一假即假,要真全真」;「非命題」的真假特點是「一真一假」.
7.四種命題中「『逆』者『交換』也」、「『否』者『否定』也」.
原命題等價於逆否命題,但原命題與逆命題、否命題都不等價.反證法分為三步:假設、推矛、得果.
注意:命題的否定是「命題的非命題,也就是『條件不變,僅否定結論』所得命題」,但否命題是「既否定原命題的條件作為條件,又否定原命題的結論作為結論的所得命題」 .
8.充要條件

二、函數
1.指數式、對數式,
, ,
,.
, , , , ,
,. .
2.(1)映射是「『全部射出』加『一箭一雕』」;映射中第一個集合 中的元素必有像,但第二個集合 中的元素不一定有原像( 中元素的像有且僅有下一個,但 中元素的原像可能沒有,也可任意個);函數是「非空數集上的映射」,其中「值域是映射中像集 的子集」.
(2)函數圖像與 軸垂線至多一個公共點,但與 軸垂線的公共點可能沒有,也可任意個.
(3)函數圖像一定是坐標系中的曲線,但坐標系中的曲線不一定能成為函數圖像.
(4)原函數與反函數有兩個「交叉關系」:自變數與因變數、定義域與值域.求一個函數的反函數,分三步:逆解、交換、定域(確定原函數的值域,並作為反函數的定義域).
注意:① , , ,
但 .
②函數 的反函數是 ,而不是 .
3.單調性和奇偶性
(1)奇函數在關於原點對稱的區間上若有單調性,則其單調性完全相同.
偶函數在關於原點對稱的區間上若有單調性,則其單調性恰恰相反.
單調函數的反函數和原函數有相同的性;如果奇函數有反函數,那麼其反函數一定還是奇函數.
注意:(1)確定函數的奇偶性,務必先判定函數定義域是否關於原點對稱.確定函數奇偶性的常用方法有:定義法、圖像法等等.
對於偶函數而言有: .
(2)若奇函數定義域中有0,則必有 .即 的定義域時, 是 為奇函數的必要非充分條件.
(3)確定函數的單調性或單調區間,在解答題中常用:定義法(取值、作差、鑒定)、導數法;在選擇、填空題中還有:數形結合法(圖像法)、特殊值法等等.
(4)函數單調是函數有反函數的一個充分非必要條件.
(5)定義在關於原點對稱區間上的任意一個函數,都可表示成「一個奇函數與一個偶函數的和(或差)」.
(6)函數單調是函數有反函數的充分非必要條件,奇函數可能反函數,但偶函數只有 有反函數;既奇又偶函數有無窮多個( ,定義域是關於原點對稱的任意一個數集).
(7)復合函數的單調性特點是:「同性得增,增必同性;異性得減,減必異性」.
復合函數的奇偶性特點是:「內偶則偶,內奇同外」.
復合函數要考慮定義域的變化。(即復合有意義)

4.對稱性與周期性(以下結論要消化吸收,不可強記)
(1)函數 與函數 的圖像關於直線 ( 軸)對稱.
推廣一:如果函數 對於一切 ,都有 成立,那麼 的圖像關於直線 (由「 和的一半 確定」)對稱.
推廣二:函數 , 的圖像關於直線 (由 確定)對稱.
(2)函數 與函數 的圖像關於直線 ( 軸)對稱.
推廣:函數 與函數 的圖像關於直線 對稱(由「 和的一半 確定」).
(3)函數 與函數 的圖像關於坐標原點中心對稱.
推廣:函數 與函數 的圖像關於點 中心對稱.
(4)函數 與函數 的圖像關於直線 對稱.
推廣:曲線 關於直線 的對稱曲線是 ;
曲線 關於直線 的對稱曲線是 .
(5)曲線 繞原點逆時針旋轉 ,所得曲線是 (逆時針橫變再交換).
特別: 繞原點逆時針旋轉 ,得 ,若 有反函數 ,則得 .
曲線 繞原點順時針旋轉 ,所得曲線是 (順時針縱變再交換).
特別: 繞原點順時針旋轉 ,得 ,若 有反函數 ,則得 .
(6)類比「三角函數圖像」得:
若 圖像有兩條對稱軸 ,則 必是周期函數,且一周期為 .
若 圖像有兩個對稱中心 ,則 是周期函數,且一周期為 .
如果函數 的圖像有下一個對稱中心 和一條對稱軸 ,則函數 必是周期函數,且一周期為 .
如果 是R上的周期函數,且一個周期為 ,那麼 .
特別:若 恆成立,則 .
若 恆成立,則 .若 恆成立,則 .
如果 是周期函數,那麼 的定義域「無界」.
5.圖像變換
(1)函數圖像的平移和伸縮變換應注意哪些問題?
函數 的圖像按向量 平移後,得函數 的圖像.

(2)函數圖像的平移、伸縮變換中,圖像的特殊點、特殊線也作相應的變換.

(3)圖像變換應重視將所研究函數與常見函數(正比例函數、反比例函數、一次函數、二次函數、對數函數、指數函數、三角函數、「魚鉤函數 」及函數 等)相互轉化.
注意:①形如 的函數,不一定是二次函數.
②應特別重視「二次三項式」、「二次方程」、「二次函數」、「二次曲線」之間的特別聯系.
③形如 的圖像是等軸雙曲線,雙曲線兩漸近線分別直線 (由分母為零確定)、直線 (由分子、分母中 的系數確定),雙曲線的中心是點 .
三、數列
1.數列的通項、數列項的項數,遞推公式與遞推數列,數列的通項與數列的前 項和公式的關系: (必要時請分類討論).
注意: ;
.
2.等差數列 中:
(1)等差數列公差的取值與等差數列的單調性.
(2) ; .
(3) 、 也成等差數列. (4)兩等差數列對應項和(差)組成的新數列仍成等差數列.
(5) 仍成等差數列.
(6) , , ,
, .
(7) ; ; .
(8)「首正」的遞減等差數列中,前 項和的最大值是所有非負項之和;
「首負」的遞增等差數列中,前 項和的最小值是所有非正項之和;
(9)有限等差數列中,奇數項和與偶數項和的存在必然聯系,由數列的總項數是偶數還是奇數決定.若總項數為偶數,則「偶數項和」-「奇數項和」=總項數的一半與其公差的積;若總項數為奇數,則「奇數項和」-「偶數項和」=此數列的中項.
(10)兩數的等差中項惟一存在.在遇到三數或四數成等差數列時,常考慮選用「中項關系」轉化求解.
(11)判定數列是否是等差數列的主要方法有:定義法、中項法、通項法、和式法、圖像法(也就是說數列是等差數列的充要條件主要有這五種形式).
3.等比數列 中:
(1)等比數列的符號特徵(全正或全負或一正一負),等比數列的首項、公比與等比數列的單調性.
(1) ; .
(3) 、 、 成等比數列; 成等比數列 成等比數列.
(4)兩等比數列對應項積(商)組成的新數列仍成等比數列.
(5) 成等比數列.
(6) .
特別: .
(7) .
(8)「首大於1」的正值遞減等比數列中,前 項積的最大值是所有大於或等於1的項的積;「首小於1」的正值遞增等比數列中,前 項積的最小值是所有小於或等於1的項的積;
(9)有限等比數列中,奇數項和與偶數項和的存在必然聯系,由數列的總項數是偶數還是奇數決定.若總項數為偶數,則「偶數項和」=「奇數項和」與「公比」的積;若總項數為奇數,則「奇數項和」=「首項」加上「公比」與「偶數項和」積的和.
(10)並非任何兩數總有等比中項. 僅當實數 同號時,實數 存在等比中項.對同號兩實數 的等比中項不僅存在,而且有一對 .也就是說,兩實數要麼沒有等比中項(非同號時),如果有,必有一對(同號時).在遇到三數或四數成等差數列時,常優先考慮選用「中項關系」轉化求解.
(11)判定數列是否是等比數列的方法主要有:定義法、中項法、通項法、和式法(也就是說數列是等比數列的充要條件主要有這四種形式).
4.等差數列與等比數列的聯系
(1)如果數列 成等差數列,那麼數列 ( 總有意義)必成等比數列.
(2)如果數列 成等比數列,那麼數列 必成等差數列.
(3)如果數列 既成等差數列又成等比數列,那麼數列 是非零常數數列;但數列 是常數數列僅是數列既成等差數列又成等比數列的必要非充分條件.
(4)如果兩等差數列有公共項,那麼由他們的公共項順次組成的新數列也是等差數列,且新等差數列的公差是原兩等差數列公差的最小公倍數.
如果一個等差數列與一個等比數列有公共項順次組成新數列,那麼常選用「由特殊到一般的方法」進行研討,且以其等比數列的項為主,探求等比數列中那些項是他們的公共項,並構成新的數列.
注意:(1)公共項僅是公共的項,其項數不一定相同,即研究 .但也有少數問題中研究 ,這時既要求項相同,也要求項數相同.(2)三(四)個數成等差(比)的中項轉化和通項轉化法.
5.數列求和的常用方法:
(1)公式法:①等差數列求和公式(三種形式),②等比數列求和公式(三種形式),
③ , ,
, .
(2)分組求和法:在直接運用公式法求和有困難時,常將「和式」中「同類項」先合並在一起,再運用公式法求和.
(3)倒序相加法:在數列求和中,若和式中到首尾距離相等的兩項和有其共性或數列的通項與組合數相關聯,則常可考慮選用倒序相加法,發揮其共性的作用求和(這也是等差數列前 和公式的推導方法).
(4)錯位相減法:如果數列的通項是由一個等差數列的通項與一個等比數列的通項相乘構成,那麼常選用錯位相減法,將其和轉化為「一個新的的等比數列的和」求解(注意:一般錯位相減後,其中「新等比數列的項數是原數列的項數減一的差」!)(這也是等比數列前 和公式的推導方法之一).
(5)裂項相消法:如果數列的通項可「分裂成兩項差」的形式,且相鄰項分裂後相關聯,那麼常選用裂項相消法求和.常用裂項形式有:
① , ② ,
③ ,

④ ,⑤ ,
⑥ ,
⑦ ,⑧ .
特別聲明:運用等比數列求和公式,務必檢查其公比與1的關系,必要時分類討論.
(6)通項轉換法。

6.分期付款型應用問題
(1)重視將這類應用題與等差數列或等比數列相聯系.
(2)若應用問題像「森林木材問題」那樣,既增長又砍伐,則常選用「統一法」統一到「最後」解決.
(3)「分期付款」、「森林木材」等問題的解決過程中,務必「卡手指」,細心計算「年限」作為相應的「指數」. 

四、三角函數
1. 終邊與 終邊相同( 的終邊在 終邊所在射線上) .
終邊與 終邊共線( 的終邊在 終邊所在直線上) .
終邊與 終邊關於 軸對稱 .
終邊與 終邊關於 軸對稱 .
終邊與 終邊關於原點對稱 .
一般地: 終邊與 終邊關於角 的終邊對稱 .
與 的終邊關系由「兩等分各象限、一二三四」確定.
2.弧長公式: ,扇形面積公式: ,1弧度(1rad) .
3.三角函數符號特徵是:一是全正、二正弦正、三是切正、四餘弦正.
注意: ,
, .
4.三角函數線的特徵是:正弦線「站在 軸上(起點在 軸上)」、餘弦線「躺在 軸上(起點是原點)」、正切線「站在點 處(起點是 )」.務必重視「三角函數值的大小與單位圓上相應點的坐標之間的關系,『正弦』 『縱坐標』、『餘弦』 『橫坐標』、『正切』 『縱坐標除以橫坐標之商』」;務必記住:單位圓中角終邊的變化與 值的大小變化的關系. 為銳角 .

5.三角函數同角關系中,平方關系的運用中,務必重視「根據已知角的范圍和三角函數的取值,精確確定角的范圍,並進行定號」;
6.三角函數誘導公式的本質是:奇變偶不變,符號看象限.
7.三角函數變換主要是:角、函數名、次數、系數(常值)的變換,其核心是「角的變換」!
角的變換主要有:已知角與特殊角的變換、已知角與目標角的變換、角與其倍角的變換、兩角與其和差角的變換.
如 , ,
, 等.
常值變換主要指「1」的變換:
等.
三角式變換主要有:三角函數名互化(切割化弦)、三角函數次數的降升(降次、升次)、運算結構的轉化(和式與積式的互化). 解題時本著「三看」的基本原則來進行:「看角、看函數、看特徵」,基本的技巧有:巧變角,公式變形使用,化切割為弦,用倍角公式將高次降次.
注意:和(差)角的函數結構與符號特徵;餘弦倍角公式的三種形式選用;降次(升次)公式中的符號特徵.「正餘弦『三兄妹— 』的內存聯系」(常和三角換元法聯系在一起
).
輔助角公式中輔助角的確定: (其中 角所在的象限由a, b的符號確定, 角的值由 確定)在求最值、化簡時起著重要作用.尤其是兩者系數絕對值之比為 的情形. 有實數解 .
8.三角函數性質、圖像及其變換:
(1)三角函數的定義域、值域、單調性、奇偶性、有界性和周期性
注意:正切函數、餘切函數的定義域;絕對值對三角函數周期性的影響:一般說來,某一周期函數解析式加絕對值或平方,其周期性是:弦減半、切不變.既為周期函數又是偶函數的函數自變數加絕對值,其周期性不變;其他不定. 如 的周期都是 , 但 的周期為 , y=|tanx|的周期不變,問函數y=cos|x|, ,y=cos|x|是周期函數嗎?
(2)三角函數圖像及其幾何性質:

(3)三角函數圖像的變換:兩軸方向的平移、伸縮及其向量的平移變換.
(4)三角函數圖像的作法:三角函數線法、五點法(五點橫坐標成等差數列)和變換法.
9.三角形中的三角函數:
(1)內角和定理:三角形三角和為 ,任意兩角和與第三個角總互補,任意兩半形和與第三個角的半形總互余.銳角三角形 三內角都是銳角 三內角的餘弦值為正值 任兩角和都是鈍角 任意兩邊的平方和大於第三邊的平方.
(2)正弦定理: (R為三角形外接圓的半徑).
注意:已知三角形兩邊一對角,求解三角形時,若運用正弦定理,則務必注意可能有兩解.
(3)餘弦定理: 等,常選用餘弦定理鑒定三角形的類型.
(4)面積公式: .
10.反三角函數:
(1)反正弦 、反餘弦 、反正切 的取值范圍分別是 .
(2)異面直線所成的角、直線與平面所成的角、二面角、向量的夾角的范圍依次是 , .直線的傾斜角、 到 的角、 與 的夾角的范圍依次是 .
五、向 量
1.向量運算的幾何形式和坐標形式,請注意:向量運算中向量起點、終點及其坐標的特徵.
2.幾個概念:零向量、單位向量(與 共線的單位向量是 ,特別: )、平行(共線)向量(無傳遞性,是因為有 )、相等向量(有傳遞性)、相反向量、向量垂直、以及一個向量在另一向量方向上的投影( 在 上的投影是 ).
3.兩非零向量平行(共線)的充要條件 .
兩個非零向量垂直的充要條件 .
特別:零向量和任何向量共線. 是向量平行的充分不必要條件!
4.平面向量的基本定理:如果e1和e2是同一平面內的兩個不共線向量,那麼對該平面內的任一向量a,有且只有一對實數 、 ,使a= e1+ e2.
5.三點 共線 共線;
向量 中三終點 共線 存在實數 使得: 且 .
6.向量的數量積: , ,

.
注意: 為銳角 且 不同向;
為直角 且 ;
為鈍角 且 不反向
是 為鈍角的必要非充分條件.
向量運算和實數運算有類似的地方也有區別:一個封閉圖形首尾連接而成的向量和為零向量,這是題目中的天然條件,要注意運用;對於一個向量等式,可以移項,兩邊平方、兩邊同乘以一個實數,兩邊同時取模,兩邊同乘以一個向量,但不能兩邊同除以一個向量,即兩邊不能約去一個向量;向量的「乘法」不滿足結合律,即 ,切記兩向量不能相除(相約).
7.
注意: 同向或有 ;
反向或有 ;
不共線 .(這些和實數集中類似)
8.平移與定比分點
(1)線段的定比分點坐標公式
設P(x,y)、P1(x1,y1),P2(x2,y2),且 ,則. , .
特別:分點的位置與 的對應關系.
中點坐標公式 , 為 的中點.
中, 過 邊中點; ;
.
為 的重心;
特別 為 的重心.
為 的垂心;
所在直線過 的內心(是 的角平分線所在直線);
的內心.
.
(2)平移公式: 如果點P(x,y)按向量a=(h,k)平移至 ,則 .
曲線 按向量a=(h,k)平移得曲線 .
六、不等式
1.(1)解不等式是求不等式的解集,最後務必有集合的形式表示;不等式解集的端點值往往是不等式對應方程的根或不等式有意義范圍的端點值.
(2)解分式不等式 的一般解題思路是什麼?(移項通分,分子分母分解因式,x的系數變為正值,標根及奇穿過偶彈回);
(3)含有兩個絕對值的不等式如何去絕對值?(一般是根據定義分類討論、平方轉化或換元轉化);
(4)解含參不等式常分類等價轉化,必要時需分類討論.注意:按參數討論,最後按參數取值分別說明其解集,但若按未知數討論,最後應求並集.
2. 利用重要不等式 以及變式 等求函數的最值時,務必注意a,b (或a ,b非負),且「等號成立」時的條件是積ab或和a+b其中之一應是定值(一正二定三等四同時).
3.常用不等式有: (根據目標不等式左右的運算結構選用) a、b、c R, (當且僅當 時,取等號)
4.比較大小的方法和證明不等式的方法主要有:差比較法、商比較法、函數性質法、綜合法、分析法和放縮法(注意:對「整式、分式、絕對值不等式」的放縮途徑, 「配方、函數單調性等」對放縮的影響).
5.含絕對值不等式的性質:
同號或有 ;
異號或有 .
注意:不等式恆成立問題的常規處理方式?(常應用方程函數思想和「分離變數法」轉化為最值問題).
七、直線和圓
1.直線傾斜角與斜率的存在性及其取值范圍;直線方向向量的意義( 或 )及其直線方程的向量式( ( 為直線的方向向量)).應用直線方程的點斜式、斜截式設直線方程時,一般可設直線的斜率為k,但你是否注意到直線垂直於x軸時,即斜率k不存在的情況?
2.知直線縱截距 ,常設其方程為 或 ;知直線橫截距 ,常設其方程為 (直線斜率k存在時, 為k的倒數)或 .知直線過點 ,常設其方程為 或 .
注意:(1)直線方程的幾種形式:點斜式、斜截式、兩點式、截矩式、一般式、向量式.以及各種形式的局限性.(如點斜式不適用於斜率不存在的直線,還有截矩式呢?)
與直線 平行的直線可表示為 ;
與直線 垂直的直線可表示為 ;
過點 與直線 平行的直線可表示為:

過點 與直線 垂直的直線可表示為:
.
(2)直線在坐標軸上的截距可正、可負、也可為0.直線兩截距相等 直線的斜率為-1或直線過原點;直線兩截距互為相反數 直線的斜率為1或直線過原點;直線兩截距絕對值相等 直線的斜率為 或直線過原點.
(3)在解析幾何中,研究兩條直線的位置關系時,有可能這兩條直線重合,而在立體幾何中一般提到的兩條直線可以理解為它們不重合.
3.相交兩直線的夾角和兩直線間的到角是兩個不同的概念:夾角特指相交兩直線所成的較小角,范圍是 ,而其到角是帶有方向的角,范圍是 .相應的公式是:夾角公式 ,直線 到 角公式 .註:點到直線的距離公式 .
特別: ;

.
4.線性規劃中幾個概念:約束條件、可行解、可行域、目標函數、最優解.
5.圓的方程:最簡方程 ;
標准方程 ;
一般式方程 ;
參數方程 為參數);
直徑式方程 .
注意:(1)在圓的一般式方程中,圓心坐標和半徑分別是 .
(2)圓的參數方程為「三角換元」提供了樣板,常用三角換元有:



.
6.解決直線與圓的關系問題有「函數方程思想」和「數形結合思想」兩種思路,等價轉化求解,重要的是發揮「圓的平面幾何性質(如半徑、半弦長、弦心距構成直角三角形,切線長定理、割線定理、弦切角定理等等)的作用!」
(1)過圓 上一點 圓的切線方程是: ,
過圓 上一點 圓的切線方程是:

過圓 上一點 圓的切線方程是: .
如果點 在圓外,那麼上述直線方程表示過點 兩切線上兩切點的「切點弦」方程.
如果點 在圓內,那麼上述直線方程表示與圓相離且垂直於 ( 為圓心)的直線方程, ( 為圓心 到直線的距離).
7.曲線 與 的交點坐標 方程組 的解;
過兩圓 、 交點的圓(公共弦)系為 ,當且僅當無平方項時, 為兩圓公共弦所在直線方程.
八、圓錐曲線
1.圓錐曲線的兩個定義,及其「括弧」內的限制條件,在圓錐曲線問題中,如果涉及到其兩焦點(兩相異定點),那麼將優先選用圓錐曲線第一定義;如果涉及到其焦點、准線(一定點和不過該點的一定直線)或離心率,那麼將優先選用圓錐曲線第二定義;涉及到焦點三角形的問題,也要重視焦半徑和三角形中正餘弦定理等幾何性質的應用.
(1)注意:①圓錐曲線第一定義與配方法的綜合運用;②圓錐曲線第二定義是:「點點距為分子、點線距為分母」,橢圓 點點距除以點線距商是小於1的正數,雙曲線 點點距除以點線距商是大於1的正數,拋物線 點點距除以點線距商是等於1.③圓錐曲線的焦半徑公式如下圖:

2.圓錐曲線的幾何性質:圓錐曲線的對稱性、圓錐曲線的范圍、圓錐曲線的特殊點線、圓錐曲線的變化趨勢.其中 ,橢圓中 、雙曲線中 .重視「特徵直角三角形、焦半徑的最值、焦點弦的最值及其『頂點、焦點、准線等相互之間與坐標系無關的幾何性質』」,尤其是雙曲線中焦半徑最值、焦點弦最值的特點.注意:等軸雙曲線的意義和性質.

3.在直線與圓錐曲線的位置關系問題中,有「函數方程思想」和「數形結合思想」兩種思路,等價轉化求解. 特別是:
①直線與圓錐曲線相交的必要條件是他們構成的方程組有實數解,當出現一元二次方程時,務必「判別式≥0」,尤其是在應用韋達定理解決問題時,必須先有「判別式≥0」.
②直線與拋物線(相交不一定交於兩點)、雙曲線位置關系(相交的四種情況)的特殊性,應謹慎處理. 
③在直線與圓錐曲線的位置關系問題中,常與「弦」相關,「平行弦」問題的關鍵是「斜率」、「中點弦」問題關鍵是「韋達定理」或「小小直角三角形」或「點差法」、「長度(弦長)」問題關鍵是長度(弦長)公式
( , ,
)或「小小直角三角形」.
④如果在一條直線上出現「三個或三個以上的點」,那麼可選擇應用「斜率」為橋梁轉化.
4.要重視常見的尋求曲線方程的方法(待定系數法、定義法、直譯法、代點法、參數法、交軌法、向量法等), 以及如何利用曲線的方程討論曲線的幾何性質(定義法、幾何法、代數法、方程函數思想、數形結合思想、分類討論思想和等價轉化思想等),這是解析幾何的兩類基本問題,也是解析幾何的基本出發點.
注意:①如果問題中涉及到平面向量知識,那麼應從已知向量的特點出發,考慮選擇向量的幾何形式進行「摘帽子或脫靴子」轉化,還是選擇向量的代數形式進行「摘帽子或脫靴子」轉化.
②曲線與曲線方程、軌跡與軌跡方程是兩個不同的概念,尋求軌跡或軌跡方程時應注意軌跡上特殊點對軌跡的「完備性與純粹性」的影響.
③在與圓錐曲線相關的綜合題中,常藉助於「平面幾何性質」數形結合(如角平分線的雙重身份)、「方程與函數性質」化解析幾何問題為代數問題、「分類討論思想」化整為零分化處理、「求值構造等式、求變數范圍構造不等關系」等等.