當前位置:首頁 » 基礎知識 » 文科2021知識總結高考數學
擴展閱讀
畫動漫人物要什麼筆 2025-01-18 12:59:41

文科2021知識總結高考數學

發布時間: 2022-07-19 02:53:56

① 關於高考!!數學需要掌握那些重點知識(文科)

高中數學重點有什麼?該怎樣攻克?

高中數學重點內容還有很多.這些重點都是保持多年來的經驗,他們分析過高考數學的題型,高中數學重點分為以下幾個部分.

向量講解

其實高中數學重點就是在必修的裡面.必修是每個高中生都必須學習的,不管是分不分文理科,他們都是會學習的.很多重點都是在必修裡面,然而在選秀當中就是講一些統計之類的問題,這都是我們在生活當中就會學到的,所以這些都不是重點,重中之重就是在必修的課本當中.

② 高中新課標文科數學知識點總結!

這是我整理的新課標文科的基礎知識 一些數學符號無法復制
我已經上傳到文庫了 標題是知識梳理課標文 你可以自己搜一下下載那樣更清楚

一.集合與簡易邏輯
1.注意區分集合中元素的形式.如: —函數的定義域; —函數的值域;
—函數圖象上的點集.
2.集合的性質: ①任何一個集合 是它本身的子集,記為 .
②空集是任何集合的子集,記為 .
③空集是任何非空集合的真子集;注意:條件為 ,在討論的時候不要遺忘了 的情況
如: ,如果 ,求 的取值.(答: )
④ , ; ;
.
⑤ .
⑥ 元素的個數: .
⑦含 個元素的集合的子集個數為 ;真子集(非空子集)個數為 ;非空真子集個數為 .
3.補集思想常運用於解決否定型或正面較復雜的有關問題。
如:已知函數 在區間 上至少存在一個實數 ,使
,求實數 的取值范圍.(答: )
4.原命題: ;逆命題: ;否命題: ;逆否命題: ;互為逆否的兩
個命題是等價的.如:「 」是「 」的 條件.(答:充分非必要條件)
5.若 且 ,則 是 的充分非必要條件(或 是 的必要非充分條件).
6.注意命題 的否定與它的否命題的區別: 命題 的否定是 ;否命題是 .
命題「 或 」的否定是「 且 」;「 且 」的否定是「 或 」.
如:「若 和 都是偶數,則 是偶數」的否命題是「若 和 不都是偶數,則 是奇數」
否定是「若 和 都是偶數,則 是奇數」.
7.常見結論的否定形式
原結論 否定 原結論 否定
是 不是 至少有一個 一個也沒有
都是 不都是 至多有一個 至少有兩個
大於 不大於 至少有 個
至多有 個

小於 不小於 至多有 個
至少有 個

對所有 ,成立
存在某 ,不成立



對任何 ,不成立
存在某 ,成立



8.且命題、或命題與否命題: 且命題『同真則真、一假則假』或命題『同假則假、一真則真』
9.全稱命題與特稱命題:例「任意x∈R,x2+1≥0」 的否定為「存在x∈R,x2+1<0」
二.函數
1.函數的三要素:定義域,值域,對應法則.研究函數的問題一定要注意定義域優先的原則.
2.求定義域:使函數解析式有意義(如:分母 ;偶次根式被開方數非負;對數真數 ,底數
且 ;零指數冪的底數 );實際問題有意義;若 定義域為 ,復合函數 定義
域由 解出;若 定義域為 ,則 定義域相當於 時 的值域.
3.求值域常用方法: ①配方法(二次函數類);②逆求法(反函數法);③換元法(特別注意新元的范圍).
④三角有界法:轉化為只含正弦、餘弦的函數,運用三角函數有界性來求值域;
⑤不等式法⑥單調性法;⑦數形結合:根據函數的幾何意義,利用數形結合的方法來求值域;
⑧判別式法(慎用):⑨導數法(一般適用於高次多項式函數).
4.求函數解析式的常用方法:⑴待定系數法(已知所求函數的類型); ⑵代換(配湊)法;
⑶方程的思想----對已知等式進行賦值,從而得到關於 及另外一個函數的方程組。
5.函數的奇偶性和單調性
⑴函數有奇偶性的必要條件是其定義域是關於原點對稱的,確定奇偶性方法有定義法、圖像法等;
⑵若 是偶函數,那麼 ;定義域含零的奇函數必過原點( );
⑶判斷函數奇偶性可用定義的等價形式: 或 ;
⑷復合函數的奇偶性特點是:「內偶則偶,內奇同外」.
注意:若判斷較為復雜解析式函數的奇偶性,應先化簡再判斷;既奇又偶的函數有無數個
(如 定義域關於原點對稱即可).
⑸奇函數在對稱的單調區間內有相同的單調性;偶函數在對稱的單調區間內有相反的單調性;
⑹確定函數單調性的方法有定義法、導數法、圖像法和特值法(用於小題)等.
⑺復合函數單調性由「同增異減」判定. (提醒:求單調區間時注意定義域)
如:函數 的單調遞增區間是 .(答: )
6.函數圖象的幾種常見變換⑴平移變換:左右平移---------「左加右減」(注意是針對 而言);
上下平移----「上加下減」(注意是針對 而言).⑵翻折變換: ; .
⑶對稱變換:①證明函數圖像的對稱性,即證圖像上任意點關於對稱中心(軸)的對稱點仍在圖像上.
②證明圖像 與 的對稱性,即證 上任意點關於對稱中心(軸)的對稱點仍在 上,反之亦然.
③函數 與 的圖像關於直線 ( 軸)對稱;函數 與函數
的圖像關於直線 ( 軸)對稱;
④若函數 對 時, 或 恆成立,則 圖像關
於直線 對稱;

7.函數的周期性:⑴若 對 時 恆成立,則 的周期為 ;
⑵若 是偶函數,其圖像又關於直線 對稱,則 的周期為 ;
⑶若 奇函數,其圖像又關於直線 對稱,則 的周期為 ;
⑷若 關於點 , 對稱,則 的周期為 ;
⑸ 的圖象關於直線 , 對稱,則函數 的周期為 ;
⑹ 對 時, 或 ,則 的周期為 ;
8.對數:⑴ ;⑵對數恆等式 ;
⑶ ;
;⑷對數換底公式 ;
9.方程 有解 ( 為 的值域); 恆成立 ,
恆成立 .恆成立問題的處理方法:⑴分離參數法(最值法); ⑵轉化為一元二次方程根的分布問題;
10.處理二次函數的問題勿忘數形結合;二次函數在閉區間上必有最值,求最值問題用「兩看法」:
一看開口方向;二看對稱軸與所給區間的相對位置關系;
11.二次函數解析式的三種形式: ①一般式: ;②頂點式:
; ③零點式: .
12.一元二次方程實根分布:先畫圖再研究 、軸與區間關系、區間端點函數值符號;
13.復合函數:⑴復合函數定義域求法:若 的定義域為 ,其復合函數 的定義域可由
不等式 解出;若 的定義域為 ,求 的定義域,相當於 時,求
的值域;⑵復合函數的單調性由「同增異減」判定.
三.數列
1.由 求 , 注意驗證 是否包含在後面 的公式中,若不符合要
單獨列出.如:數列 滿足 ,求 (答: ).
2.等差數列 ( 為常數)


3.等差數列的性質: ① , ;
② (反之不一定成立);特別地,當 時,有 ;
③若 、 是等差數列,則 ( 、 是非零常數)是等差數列;
④等差數列的「間隔相等的連續等長片斷和序列」即 仍是等差數列;
⑤等差數列 ,當項數為 時, , ;項數為 時,
, ,且 ; .
⑥首項為正(或為負)的遞減(或遞增)的等差數列前n項和的最大(或最小)問題,轉化為解不等式
(或 ).也可用 的二次函數關系來分析.
⑦若 ,則 ;若 ,則 ;
若 ,則Sm+n=0;S3m=3(S2m-Sm); .
4.等比數列 .
5.等比數列的性質
① , ;②若 、 是等比數列,則 、 等也是等比數列;
③ ;④ (反之不一定成
立); . ⑤等比數列中 (註:各項均不為0)
仍是等比數列. ⑥等比數列 當項數為 時, ;項數為 時, .
6.①如果數列 是等差數列,則數列 ( 總有意義)是等比數列;如果數列 是等比數列,
則數列 是等差數列;
②若 既是等差數列又是等比數列,則 是非零常數數列;
③如果兩個等差數列有公共項,那麼由他們的公共項順次組成的數列也是等差數列,且新數列的公差
是原兩個等差數列公差的最小公倍數;如果一個等差數列和一個等比數列有公共項,那麼由他們的
公共項順次組成的數列是等比數列,由特殊到一般的方法探求其通項;
④三個數成等差的設法: ;四個數成等差的設法: ;
三個數成等比的設法: ;四個數成等比的錯誤設法: (為什麼?)
7.數列的通項的求法:⑴公式法:①等差數列通項公式;②等比數列通項公式.
⑵已知 (即 )求 用作差法: .
⑶已知 求 用作商法: .
⑷若 求 用迭加法. ⑸已知 ,求 用迭乘法.
⑹已知數列遞推式求 ,用構造法(構造等差、等比數列):①形如 , ,
( 為常數)的遞推數列都可以用待定系數法轉化為公比為 的等比數列後,
再求 .②形如 的遞推數列都可以用 「取倒數法」求通項.
8.數列求和的方法:①公式法:等差數列,等比數列求和公式;②分組求和法;③倒序相加;④錯位相減;⑤分裂通項法.
公式: ; ;
; ;常見裂項公式 ;

常見放縮公式: .
四.三角函數
1. 終邊與 終邊相同 ; 終邊與 終邊共線 ; 終邊
與 終邊關於 軸對稱 ; 終邊與 終邊關於 軸對稱
; 終邊與 終邊關於原點對稱 ;
終邊與 終邊關於角 終邊對稱 .
2.弧長公式: ;扇形面積公式: ; 弧度( )≈ .
3.三角函數符號(「正號」)規律記憶口訣:「一全二正弦,三切四餘弦」.
注意: ; ;
4.三角函數同角關系中(八塊圖):注意「正、餘弦三兄妹
、 」的關系.
如 等.
5.對於誘導公式,可用「奇變偶不變,符號看象限」概括;
(注意:公式中始終視a為銳角)
6.角的變換:已知角與特殊角、已知角與目標角、已知角
與其倍角或半形、兩角與其和差角等變換.
如: ; ; ; ;
等;「 」的變換: ;
7.重要結論: 其中 );重要公式 ;
8.正弦型曲線 的對稱軸 ;對稱中心 ;
餘弦型曲線 的對稱軸 ;對稱中心 ;
9.熟知正弦、餘弦、正切的和、差、倍公式,正、餘弦定理,處理三角形內的三角函數問題勿忘三
內角和等於 ,一般用正、餘弦定理實施邊角互化;正弦定理: ;
餘弦定理: ;
面積公式: ;射影定理: .
10. 中,易得: ,① , , .
② , , . ③
④銳角 中, , , ,類比得鈍角 結論.
⑤ .
11.角的范圍:異面直線所成角 ;直線與平面所成角 ;二面角和兩向量的夾角 ;直線
的傾斜角 ; 到 的角 ; 與 的夾角 .注意術語:坡度、仰角、俯角、方位角等.
五.平面向量
1.設 , . (1) ;(2) .
2.平面向量基本定理:如果 和 是同一平面內的兩個不共線的向量,那麼對該平面內的任一向
量 ,有且只有一對實數 、 ,使 .
3.設 , ,則 ;其幾何意義是 等於 的長度
與 在 的方向上的投影的乘積; 在 的方向上的投影 .
4.三點 、 、 共線 與 共線;與 共線的單位向量 .
5.平面向量數量積性質:設 , ,則 ;注意:
為銳角 , 不同向; 為直角 ; 為鈍角 , 不反向.
6. 同向或有 ; 反向或有
; 不共線 .
7.平面向量數量積的坐標表示:⑴若 , ,則 ;
; ⑵若 ,則 .
六.不等式
1.掌握課本上的幾個不等式性質,注意使用條件,另外需要特別注意:
①若 , ,則 .即不等式兩邊同號時,不等式兩邊取倒數,不等號方向要改變.
②如果對不等式兩邊同時乘以一個代數式,要注意它的正負號,如果正負號未定,要注意分類討論.
2.掌握幾類不等式(一元一次、二次、絕對值不等式、簡單的指數、對數不等式)的解法,尤其注意
用分類討論的思想解含參數的不等式;勿忘數軸標根法,零點分區間法.
3.掌握重要不等式,(1)均值不等式:若 ,則 (當且僅當 時
取等號)使用條件:「一正二定三相等 」 常用的方法為:拆、湊、平方等;(2) ,
(當且僅當 時,取等號);(3)公式注意變形如: , ;(4)若 ,則 (真分數的性質);
4.含絕對值不等式: 同號或有 ; 異號或有
.
5.證明不等式常用方法:⑴比較法:作差比較: .注意:若兩個正數作差比較有困
難,可以通過它們的平方差來比較大小;⑵綜合法:由因導果;⑶分析法:執果索因.基本步驟:要證…
需證…,只需證…; ⑷反證法:正難則反;⑸放縮法:將不等式一側適當的放大或縮小以達證題目的.
放縮法的方法有:①添加或捨去一些項,如: ; .②將分子或分母放大(或縮小)
③利用基本不等式,如: .④利用常用結論: ;
(程度大); (程度小);
⑹換元法:換元的目的就是減少不等式中變數,以使問題化難為易,化繁為簡,常用的換元有三角換元
代數換元.如:知 ,可設 ;知 ,可設 ,
( );知 ,可設 ;已知 ,可設 .
⑺最值法,如: ,則 恆成立. ,則 恆成立.
七.直線和圓的方程
1.直線的傾斜角 的范圍是 ;
2.直線的傾斜角與斜率的變化關系 (如右圖):
3.直線方程五種形式:⑴點斜式:已知直線過點 斜率為 ,則直線
方程為 ,它不包括垂直於 軸的直線.⑵斜截式:已知直線在 軸上的截距為
和斜率 ,則直線方程為 ,它不包括垂直於 軸的直線. ⑶兩點式:已知直線經過
、 兩點,則直線方程為 ,它不包括垂直於坐標軸的直線.
⑷截距式:已知直線在 軸和 軸上的截距為 ,則直線方程為 ,它不包括垂直於坐標
軸的直線和過原點的直線.⑸一般式:任何直線均可寫成 ( 不同時為0)的形式.
提醒:⑴直線方程的各種形式都有局限性.(如點斜式不適用於斜率不存在的直線,還有截距式呢?)
⑵直線在坐標軸上的截距可正、可負、也可為 .直線兩截距相等 直線的斜率為 或直線過
原點;直線兩截距互為相反數 直線的斜率為 或直線過原點;直線兩截距絕對值相等
直線的斜率為 或直線過原點.
⑶截距不是距離,截距相等時不要忘了過原點的特殊情形.
4.直線 與直線 的位置關系:
⑴平行 (斜率)且 (在 軸上截距);
⑵相交 ;(3)重合 且 .
5.點 到直線 的距離公式 ;
兩條平行線 與 的距離是 .
6.設三角形 三頂點 , , ,則重心 ;
7.有關對稱的一些結論
⑴點 關於 軸、 軸、原點、直線 的對稱點分別是 , , , .
⑵曲線 關於下列點和直線對稱的曲線方程為:①點 : ;
② 軸: ;③ 軸: ;④原點: ;⑤直線 :
;⑥直線 : ;⑦直線 : .
8.⑴圓的標准方程: . ⑵圓的一般方程:
.特別提醒:只有當 時,方程
才表示圓心為 ,半徑為 的圓(二元二次方程
表示圓 ,且 ).
⑶圓的參數方程: ( 為參數),其中圓心為 ,半徑為 .圓的參數方程主要應用是
三角換元: ; .
⑷以 、 為直徑的圓的方程 ;
10.點和圓的位置關系的判斷通常用幾何法(計算圓心到直線距離).點 及圓的方程
.① 點 在圓外;
② 點 在圓內;③ 點 在圓上.
11.圓上一點的切線方程:點 在圓 上,則過點 的切線方程為: ;
過圓 上一點 切線方程為 .
12.過圓外一點作圓的切線,一定有兩條,如果只求出了一條,那麼另外一條就是與 軸垂直的直線.
13.直線與圓的位置關系,通常轉化為圓心距與半徑的關系,或者利用垂徑定理,構造直角三角形解
決弦長問題.① 相離 ② 相切 ③ 相交
14.圓與圓的位置關系,經常轉化為兩圓的圓心距與兩圓的半徑之間的關系.設兩圓的圓心距為 ,
兩圓的半徑分別為 : 兩圓相離; 兩圓相外切; 兩
圓相交; 兩圓相內切; 兩圓內含; 兩圓同心.
15.求解線性規劃問題的步驟是:(1)根據實際問題的約束條件列出不等式;(2)作出可行域,寫出目標
函數(判斷幾何意義);(3)確定目標函數的最優位置,從而獲得最優解.
八.圓錐曲線方程
1.直線與圓錐曲線相交的弦長公式 或
(弦端點 ,由方程 消去
得到 , , 為斜率). 這里體現了解幾中「設而不求」的思想;
2.橢圓、雙曲線的通徑(最短弦)為 ,焦准距為 ,拋物線的通徑為 ,焦准距為 ;
雙曲線 的焦點到漸近線的距離為 ;
3.中心在原點,坐標軸為對稱軸的橢圓,雙曲線方程可設為 (對於橢圓 );
4.拋物線 的焦點弦(過焦點的弦)為 , 、 ,則有如下結論:
⑴ ;⑵ , ; ⑶ .
5.對於 拋物線上的點的坐標可設為 ,以簡化計算.
6.圓錐曲線中點弦問題:遇到中點弦問題常用「韋達定理」或「點差法」求解.在橢圓 中,
以 為中點的弦所在直線斜率 ;在雙曲線 中,以 為中點的弦所
在直線斜率 ;在拋物線 中,以 為中點的弦所在直線的斜率 .
7.求軌跡方程的常用方法:
⑴直接法:直接通過建立 、 之間的關系,構成 ,是求軌跡的最基本的方法.
⑵待定系數法:可先根據條件設所求曲線的方程,再由條件確定其待定系數,代回所列的方程即可.
⑶代入法(相關點法或轉移法).
⑷定義法:如果能夠確定動點的軌跡滿足某已知曲線的定義,則可由曲線的定義直接寫出方程.
⑸交軌法(參數法):當動點 坐標之間的關系不易直接找到,也沒有相關動點可用時,可考慮
將 、 均用一中間變數(參數)表示,得參數方程,再消去參數得普通方程.
8.解析幾何與向量綜合的有關結論:
⑴給出直線的方向向量 或 .等於已知直線的斜率 或 ;
⑵給出 與 相交,等於已知 過 的中點;
⑶給出 ,等於已知 是 的中點;
⑷給出 ,等於已知 與 的中點三點共線;
⑸給出以下情形之一: ① ; ②存在實數 ,使 ; ③若存在實數 ,
且 ;使 ,等於已知 三點共線.
⑹給出 ,等於已知 是 的定比分點, 為定比,即
⑺給出 ,等於已知 ,即 是直角,給出 ,等於已
知 是鈍角或反向共線,給出 ,等於已知 是銳角或同向共線.
⑼在平行四邊形 中,給出 ,等於已知 是菱形.
⑽在平行四邊形 中,給出 ,等於已知 是矩形.
⑾在 中,給出 ,等於已知 是 的外心(三角形的外心是外接圓
的圓心,是三角形三邊垂直平分線的交點).
⑿在 中,給出 ,等於已知 是 的重心(三角形的重心是三角形
三條中線的交點).
⒀在 中,給出 ,等於已知 是 的垂心(三角形的垂心
是三角形三條高的交點).
⒁在 中,給出 等於已知 通過 的內心.
⒂在 中,給出 等於已知 是 的內心(三角形內切圓
的圓心,三角形的內心是三角形三條角平分線的交點).
⒃在 中,給出 ,等於已知 是 中 邊的中線.
等可能事件的概率公式:⑴ ; ⑵互斥事件有一個發生的概率公式為:
;⑶相互獨立事件同時發生的概率公式為 ;⑷獨立重復試驗
概率公式 ;⑸如果事件 與 互斥,那麼事件 與 、 與 及事件
與 也都是互斥事件;⑹如果事件 、 相互獨立,那麼事件 、 至少有一個不發生
的概率是 ;(6)如果事件 與 相互獨立,那麼事件 與 至少有
一個發生的概率是 .
十三.導數
1.導數的定義: 在點 處的導數記作 .
2.函數 在點 處有導數,則 的曲線在該點處必有切線,且導數值是該切線的斜率.但函數
的曲線在點 處有切線,則 在該點處不一定可導.如 在 有切線,但不可導.
3.函數 在點 處的導數的幾何意義是指:曲線 在點 處切線的斜率,
即曲線 在點 處的切線的斜率是 ,切線方程為 .
4.常見函數的導數公式: ( 為常數); . ; ;
; ; .
5.導數的四則運演算法則: ; ; .
6.復合函數的導數: .
7.導數的應用:
(1)利用導數判斷函數的單調性:設函數 在某個區間內可導,如果 ,那麼 為增
函數;如果 ,那麼 為減函數;如果在某個區間內恆有 ,那麼 為常數;
(2)求可導函數極值的步驟:①求導數 ;②求方程 的根;③檢驗 在方程
根的左右的符號,如果左正右負,那麼函數 在這個根處取得最大值;如果左負
右正,那麼函數 在這個根處取得最小值;
(3)求可導函數最大值與最小值的步驟:①求 在 內的極值;②將 在各極值點
點的極值與 、 比較,其中最大的一個為最大值,最小的一個為最小值.
十四.復數
1.理解復數、實數、虛數、純虛數、模的概念和復數的幾何表示.
2.熟練掌握與靈活運用以下結論:⑴ 且 ;⑵復數是
實數的條件:① ;② ;③ .
3.復數是純虛數的條件: ① 是純虛數 且 ; ② 是純虛數
;③ 是純虛數 .
4.⑴復數的代數形式: ;⑵復數的加、減、乘、除運算按以下法則進行:設 ,
,則 , ,
.
十五.注意答題技巧訓練
1.技術矯正:考試中時間分配及處理技巧非常重要,有幾點需要必須提醒同學們注意:
⑴按序答題,先易後難.一定要選擇熟題先做、有把握的題目先做.
⑵不能糾纏在某一題、某一細節上,該跳過去就先跳過去,千萬不能感覺自己被卡住,這樣會心慌,
影響下面做題的情緒.
⑶避免「回頭想」現象,一定要爭取一步到位,不要先做一下,等回過頭來再想再檢查,高考時間較緊
張,也許待會兒根本顧不上再來思考.
⑷做某一選擇題時如果沒有十足的把握,初步答案或猜估的答案必須先在卷子上做好標記,有時間
再推敲,不要空答案,否則要是時間來不及瞎寫答案只能增加錯誤的概率.
2.規范化提醒:這是取得高分的基本保證.規范化包括:解題過程有必要的文字說明或敘述,注意解完
後再看一下題目,看你的解答是否符合題意,謹防因解題不全或失誤,答題或書寫不規范而失分.總
之,要吃透題「情」,合理分配時間,做到一準、二快、三規范.特別是要注意解題結果的規范化.
⑴解與解集:方程的結果一般用解表示(除非強調求解集);不等式、三角方程的結果一般用解集(集
合或區間)表示.三角方程的通解中必須加 .在寫區間或集合時,要正確地書寫圓括弧、方括
號或大括弧,區間的兩端點之間、集合的元素之間用逗號隔開.
⑵帶單位的計算題或應用題,最後結果必須帶單位,解題結束後一定要寫上符合題意的「答」.
⑶分類討論題,一般要寫綜合性結論.
⑷任何結果要最簡.如 等.
⑸排列組合題,無特別聲明,要求出數值.
⑹函數問題一般要註明定義域(特別是反函數).
⑺參數方程化普通方程,要考慮消參數過程中最後的限制范圍.
⑻軌跡問題:①軌跡與軌跡方程的區別:軌跡方程一般用普通方程表示,軌跡則需要說明圖形形狀.
②有限制條件的必須註明軌跡中圖形的范圍或軌跡方程中 或 的范圍.
⑼分數線要劃橫線,不用斜線.

③ 高中文科數學知識點總結

我說句實話吧
你可以從書店買一本小個兒的那種總結類的書
沒多少錢 而且方便拿著
你可以放在兜里
有空就拿出來看看
上面的挺全的。

④ 求高中數學(文科)最基礎知識

數學高考基礎知識、常見結論詳解

一、集合與簡易邏輯:
一、理解集合中的有關概念
(1)集合中元素的特徵: 確定性 , 互異性 , 無序性 。
集合元素的互異性:如: , ,求 ;
(2)集合與元素的關系用符號 , 表示。
(3)常用數集的符號表示:自然數集 ;正整數集 、 ;整數集 ;有理數集 、實數集 。
(4)集合的表示法: 列舉法 , 描述法 , 韋恩圖 。
注意:區分集合中元素的形式:如: ; ; ; ; ;

(5)空集是指不含任何元素的集合。( 、 和 的區別;0與三者間的關系)
空集是任何集合的子集,是任何非空集合的真子集。
注意:條件為 ,在討論的時候不要遺忘了 的情況。
如: ,如果 ,求 的取值。
二、集合間的關系及其運算
(1)符號「 」是表示元素與集合之間關系的,立體幾何中的體現 點與直線(面)的關系 ;
符號「 」是表示集合與集合之間關系的,立體幾何中的體現 面與直線(面)的關系 。
(2) ; ;

(3)對於任意集合 ,則:
① ; ; ;
② ; ;
; ;
③ ; ;
(4)①若 為偶數,則 ;若 為奇數,則 ;
②若 被3除餘0,則 ;若 被3除餘1,則 ;若 被3除餘2,則 ;
三、集合中元素的個數的計算:
(1)若集合 中有 個元素,則集合 的所有不同的子集個數為_________,所有真子集的個數是__________,所有非空真子集的個數是 。
(2) 中元素的個數的計算公式為: ;
(3)韋恩圖的運用:
四、 滿足條件 , 滿足條件 ,
若 ;則 是 的充分非必要條件 ;
若 ;則 是 的必要非充分條件 ;
若 ;則 是 的充要條件 ;
若 ;則 是 的既非充分又非必要條件 ;
五、原命題與逆否命題,否命題與逆命題具有相同的 ;
注意:「若 ,則 」在解題中的運用,
如:「 」是「 」的 條件。
六、反證法:當證明「若 ,則 」感到困難時,改證它的等價命題「若 則 」成立,
步驟:1、假設結論反面成立;2、從這個假設出發,推理論證,得出矛盾;3、由矛盾判斷假設不成立,從而肯定結論正確。
矛盾的來源:1、與原命題的條件矛盾;2、導出與假設相矛盾的命題;3、導出一個恆假命題。
適用與待證命題的結論涉及「不可能」、「不是」、「至少」、「至多」、「唯一」等字眼時。
正面詞語 等於 大於 小於 是 都是 至多有一個
否定

正面詞語 至少有一個 任意的 所有的 至多有n個 任意兩個
否定

二、函數
一、映射與函數:
(1)映射的概念: (2)一一映射:(3)函數的概念:
如:若 , ;問: 到 的映射有 個, 到 的映射有 個; 到 的函數有 個,若 ,則 到 的一一映射有 個。
函數 的圖象與直線 交點的個數為 個。
二、函數的三要素: , , 。
相同函數的判斷方法:① ;② (兩點必須同時具備)
(1)函數解析式的求法:
①定義法(拼湊):②換元法:③待定系數法:④賦值法:
(2)函數定義域的求法:
① ,則 ; ② 則 ;
③ ,則 ; ④如: ,則 ;
⑤含參問題的定義域要分類討論;
如:已知函數 的定義域是 ,求 的定義域。
⑥對於實際問題,在求出函數解析式後;必須求出其定義域,此時的定義域要根據實際意義來確定。如:已知扇形的周長為20,半徑為 ,扇形面積為 ,則 ;定義域為 。
(3)函數值域的求法:
①配方法:轉化為二次函數,利用二次函數的特徵來求值;常轉化為型如: 的形式;
②逆求法(反求法):通過反解,用 來表示 ,再由 的取值范圍,通過解不等式,得出 的取值范圍;常用來解,型如: ;
④換元法:通過變數代換轉化為能求值域的函數,化歸思想;
⑤三角有界法:轉化為只含正弦、餘弦的函數,運用三角函數有界性來求值域;
⑥基本不等式法:轉化成型如: ,利用平均值不等式公式來求值域;
⑦單調性法:函數為單調函數,可根據函數的單調性求值域。
⑧數形結合:根據函數的幾何圖形,利用數型結合的方法來求值域。
求下列函數的值域:① (2種方法);
② (2種方法);③ (2種方法);
三、函數的性質:
函數的單調性、奇偶性、周期性
單調性:定義:注意定義是相對與某個具體的區間而言。
判定方法有:定義法(作差比較和作商比較)
導數法(適用於多項式函數)
復合函數法和圖像法。
應用:比較大小,證明不等式,解不等式。
奇偶性:定義:注意區間是否關於原點對稱,比較f(x) 與f(-x)的關系。f(x) -f(-x)=0 f(x) =f(-x) f(x)為偶函數;
f(x)+f(-x)=0 f(x) =-f(-x) f(x)為奇函數。
判別方法:定義法, 圖像法 ,復合函數法
應用:把函數值進行轉化求解。
周期性:定義:若函數f(x)對定義域內的任意x滿足:f(x+T)=f(x),則T為函數f(x)的周期。
其他:若函數f(x)對定義域內的任意x滿足:f(x+a)=f(x-a),則2a為函數f(x)的周期.
應用:求函數值和某個區間上的函數解析式。
四、圖形變換:函數圖像變換:(重點)要求掌握常見基本函數的圖像,掌握函數圖像變換的一般規律。
常見圖像變化規律:(注意平移變化能夠用向量的語言解釋,和按向量平移聯系起來思考)
平移變換 y=f(x)→y=f(x+a),y=f(x)+b
注意:(ⅰ)有系數,要先提取系數。如:把函數y=f(2x)經過 平移得到函數y=f(2x+4)的圖象。
(ⅱ)會結合向量的平移,理解按照向量 (m,n)平移的意義。
對稱變換 y=f(x)→y=f(-x),關於y軸對稱
y=f(x)→y=-f(x) ,關於x軸對稱
y=f(x)→y=f|x|,把x軸上方的圖象保留,x軸下方的圖象關於x軸對稱
y=f(x)→y=|f(x)|把y軸右邊的圖象保留,然後將y軸右邊部分關於y軸對稱。(注意:它是一個偶函數)
伸縮變換:y=f(x)→y=f(ωx),
y=f(x)→y=Af(ωx+φ)具體參照三角函數的圖象變換。
一個重要結論:若f(a-x)=f(a+x),則函數y=f(x)的圖像關於直線x=a對稱;
如: 的圖象如圖,作出下列函數圖象:
(1) ;(2) ;
(3) ;(4) ;
(5) ;(6) ;
(7) ;(8) ;
(9) 。
五、反函數:
(1)定義:
(2)函數存在反函數的條件: ;
(3)互為反函數的定義域與值域的關系: ;
(4)求反函數的步驟:①將 看成關於 的方程,解出 ,若有兩解,要注意解的選擇;②將 互換,得 ;③寫出反函數的定義域(即 的值域)。
(5)互為反函數的圖象間的關系: ;
(6)原函數與反函數具有相同的單調性;
(7)原函數為奇函數,則其反函數仍為奇函數;原函數為偶函數,它一定不存在反函數。
如:求下列函數的反函數: ; ;
七、常用的初等函數:
(1)一元一次函數: ,當 時,是增函數;當 時,是減函數;
(2)一元二次函數:
一般式: ;對稱軸方程是 ;頂點為 ;
兩點式: ;對稱軸方程是 ;與 軸的交點為 ;
頂點式: ;對稱軸方程是 ;頂點為 ;
①一元二次函數的單調性:
當 時: 為增函數; 為減函數;當 時: 為增函數; 為減函數;
②二次函數求最值問題:首先要採用配方法,化為 的形式,
Ⅰ、若頂點的橫坐標在給定的區間上,則
時:在頂點處取得最小值,最大值在距離對稱軸較遠的端點處取得;
時:在頂點處取得最大值,最小值在距離對稱軸較遠的端點處取得;
Ⅱ、若頂點的橫坐標不在給定的區間上,則
時:最小值在距離對稱軸較近的端點處取得,最大值在距離對稱軸較遠的端點處取得;
時:最大值在距離對稱軸較近的端點處取得,最小值在距離對稱軸較遠的端點處取得;
有三個類型題型:
(1)頂點固定,區間也固定。如:
(2)頂點含參數(即頂點變動),區間固定,這時要討論頂點橫坐標何時在區間之內,何時在區間之外。
(3)頂點固定,區間變動,這時要討論區間中的參數.
③二次方程實數根的分布問題: 設實系數一元二次方程 的兩根為 ;則:
根的情況
等價命題 在區間 上有兩根 在區間 上有兩根 在區間 或 上有一根
充要條件
注意:若在閉區間 討論方程 有實數解的情況,可先利用在開區間 上實根分布的情況,得出結果,在令 和 檢查端點的情況。
(3)反比例函數:
(4)指數函數:
指數運演算法則: ; ; 。
指數函數:y= (a>o,a≠1),圖象恆過點(0,1),單調性與a的值有關,在解題中,往往要對a分a>1和0<a<1兩種情況進行討論,要能夠畫出函數圖象的簡圖。
(5)對數函數:
指數運演算法則: ; ; ;
對數函數:y= (a>o,a≠1) 圖象恆過點(1,0),單調性與a的值有關,在解題中,往往要對a分a>1和0<a<1兩種情況進行討論,要能夠畫出函數圖象的簡圖。
注意:(1) 與 的圖象關系是 ;
(2)比較兩個指數或對數的大小的基本方法是構造相應的指數或對數函數,若底數不相同時轉化為同底數的指數或對數,還要注意與1比較或與0比較。
(3)已知函數 的定義域為 ,求 的取值范圍。
已知函數 的值域為 ,求 的取值范圍。
六、 的圖象:
定義域: ;值域: ; 奇偶性: ; 單調性: 是增函數; 是減函數。
七、補充內容:
抽象函數的性質所對應的一些具體特殊函數模型:
① 正比例函數
② ; ;
③ ; ;
④ ;
三、導 數
1.求導法則:
(c)/=0 這里c是常數。即常數的導數值為0。
(xn)/=nxn-1 特別地:(x)/=1 (x-1)/= ( )/=-x-2 (f(x)±g(x))/= f/(x)±g/(x) (k•f(x))/= k•f/(x)
2.導數的幾何物理意義:
k=f/(x0)表示過曲線y=f(x)上的點P(x0,f(x0))的切線的斜率。
V=s/(t) 表示即時速度。a=v/(t) 表示加速度。
3.導數的應用:
①求切線的斜率。
②導數與函數的單調性的關系
一 與 為增函數的關系。
能推出 為增函數,但反之不一定。如函數 在 上單調遞增,但 ,∴ 是 為增函數的充分不必要條件。
二 時, 與 為增函數的關系。
若將 的根作為分界點,因為規定 ,即摳去了分界點,此時 為增函數,就一定有 。∴當 時, 是 為增函數的充分必要條件。
三 與 為增函數的關系。
為增函數,一定可以推出 ,但反之不一定,因為 ,即為 或 。當函數在某個區間內恆有 ,則 為常數,函數不具有單調性。∴ 是 為增函數的必要不充分條件。
函數的單調性是函數一條重要性質,也是高中階段研究的重點,我們一定要把握好以上三個關系,用導數判斷好函數的單調性。因此新教材為解決單調區間的端點問題,都一律用開區間作為單調區間,避免討論以上問題,也簡化了問題。但在實際應用中還會遇到端點的討論問題,要謹慎處理。
四單調區間的求解過程,已知 (1)分析 的定義域;(2)求導數 (3)解不等式 ,解集在定義域內的部分為增區間(4)解不等式 ,解集在定義域內的部分為減區間。
我們在應用導數判斷函數的單調性時一定要搞清以下三個關系,才能准確無誤地判斷函數的單調性。以下以增函數為例作簡單的分析,前提條件都是函數 在某個區間內可導。
③求極值、求最值。
注意:極值≠最值。函數f(x)在區間[a,b]上的最大值為極大值和f(a) 、f(b)中最大的一個。最小值為極小值和f(a) 、f(b)中最小的一個。
f/(x0)=0不能得到當x=x0時,函數有極值。
但是,當x=x0時,函數有極值 f/(x0)=0
判斷極值,還需結合函數的單調性說明。
4.導數的常規問題:
(1)刻畫函數(比初等方法精確細微);
(2)同幾何中切線聯系(導數方法可用於研究平面曲線的切線);
(3)應用問題(初等方法往往技巧性要求較高,而導數方法顯得簡便)等關於 次多項式的導數問題屬於較難類型。
2.關於函數特徵,最值問題較多,所以有必要專項討論,導數法求最值要比初等方法快捷簡便。
3.導數與解析幾何或函數圖象的混合問題是一種重要類型,也是高考中考察綜合能力的一個方向,應引起注意。
四、不等式
一、不等式的基本性質:
注意:(1)特值法是判斷不等式命題是否成立的一種方法,此法尤其適用於不成立的命題。
(2)注意課本上的幾個性質,另外需要特別注意:
①若ab>0,則 。即不等式兩邊同號時,不等式兩邊取倒數,不等號方向要改變。
②如果對不等式兩邊同時乘以一個代數式,要注意它的正負號,如果正負號未定,要注意分類討論。
③圖象法:利用有關函數的圖象(指數函數、對數函數、二次函數、三角函數的圖象),直接比較大小。
④中介值法:先把要比較的代數式與「0」比,與「1」比,然後再比較它們的大小
二、均值不等式:兩個數的算術平均數不小於它們的幾何平均數。
若 ,則 (當且僅當 時取等號)
基本變形:① ; ;
②若 ,則 ,
基本應用:①放縮,變形;
②求函數最值:注意:①一正二定三取等;②積定和小,和定積大。
當 (常數),當且僅當 時, ;
當 (常數),當且僅當 時, ;
常用的方法為:拆、湊、平方;
如:①函數 的最小值 。
②若正數 滿足 ,則 的最小值 。
三、絕對值不等式:
注意:上述等號「=」成立的條件;
四、常用的基本不等式:
(1)設 ,則 (當且僅當 時取等號)
(2) (當且僅當 時取等號); (當且僅當 時取等號)
(3) ; ;
五、證明不等式常用方法:
(1)比較法:作差比較:
作差比較的步驟:
⑴作差:對要比較大小的兩個數(或式)作差。
⑵變形:對差進行因式分解或配方成幾個數(或式)的完全平方和。
⑶判斷差的符號:結合變形的結果及題設條件判斷差的符號。
注意:若兩個正數作差比較有困難,可以通過它們的平方差來比較大小。
(2)綜合法:由因導果。
(3)分析法:執果索因。基本步驟:要證……只需證……,只需證……
(4)反證法:正難則反。
(5)放縮法:將不等式一側適當的放大或縮小以達證題目的。
放縮法的方法有:
⑴添加或捨去一些項,如: ;
⑵將分子或分母放大(或縮小)
⑶利用基本不等式,如: ;

⑷利用常用結論:
Ⅰ、 ;
Ⅱ、 ; (程度大)
Ⅲ、 ; (程度小)
(6)換元法:換元的目的就是減少不等式中變數,以使問題化難為易,化繁為簡,常用的換元有三角換元和代數換元。如:
已知 ,可設 ;
已知 ,可設 ( );
已知 ,可設 ;
已知 ,可設 ;
(7)構造法:通過構造函數、方程、數列、向量或不等式來證明不等式;
六、不等式的解法:
(1)一元一次不等式:
Ⅰ、 :⑴若 ,則 ;⑵若 ,則 ;
Ⅱ、 :⑴若 ,則 ;⑵若 ,則 ;
(2)一元二次不等式: 一元二次不等式二次項系數小於零的,同解變形為二次項系數大於零;註:要對 進行討論:
(5)絕對值不等式:若 ,則 ; ;
注意:(1).幾何意義: : ; : ;
(2)解有關絕對值的問題,考慮去絕對值,去絕對值的方法有:
⑴對絕對值內的部分按大於、等於、小於零進行討論去絕對值;①若 則 ;②若 則 ;③若 則 ;
(3).通過兩邊平方去絕對值;需要注意的是不等號兩邊為非負值。
(4).含有多個絕對值符號的不等式可用「按零點分區間討論」的方法來解。
(6)分式不等式的解法:通解變形為整式不等式;
⑴ ;⑵ ;
⑶ ;⑷ ;
(7)不等式組的解法:分別求出不等式組中,每個不等式的解集,然後求其交集,即是這個不等式組的解集,在求交集中,通常把每個不等式的解集畫在同一條數軸上,取它們的公共部分。
(8)解含有參數的不等式:
解含參數的不等式時,首先應注意考察是否需要進行分類討論.如果遇到下述情況則一般需要討論:
①不等式兩端乘除一個含參數的式子時,則需討論這個式子的正、負、零性.
②在求解過程中,需要使用指數函數、對數函數的單調性時,則需對它們的底數進行討論.
③在解含有字母的一元二次不等式時,需要考慮相應的二次函數的開口方向,對應的一元二次方程根的狀況(有時要分析△),比較兩個根的大小,設根為 (或更多)但含參數,要分 、 、 討論。

五、數列
本章是高考命題的主體內容之一,應切實進行全面、深入地復習,並在此基礎上,突出解決下述幾個問題:(1)等差、等比數列的證明須用定義證明,值得注意的是,若給出一個數列的前 項和 ,則其通項為 若 滿足 則通項公式可寫成 .(2)數列計算是本章的中心內容,利用等差數列和等比數列的通項公式、前 項和公式及其性質熟練地進行計算,是高考命題重點考查的內容.(3)解答有關數列問題時,經常要運用各種數學思想.善於使用各種數學思想解答數列題,是我們復習應達到的目標. ①函數思想:等差等比數列的通項公式求和公式都可以看作是 的函數,所以等差等比數列的某些問題可以化為函數問題求解.
②分類討論思想:用等比數列求和公式應分為 及 ;已知 求 時,也要進行分類;
③整體思想:在解數列問題時,應注意擺脫呆板使用公式求解的思維定勢,運用整
體思想求解.
(4)在解答有關的數列應用題時,要認真地進行分析,將實際問題抽象化,轉化為數學問題,再利用有關數列知識和方法來解決.解答此類應用題是數學能力的綜合運用,決不是簡單地模仿和套用所能完成的.特別注意與年份有關的等比數列的第幾項不要弄錯.
一、基本概念:
1、 數列的定義及表示方法:
2、 數列的項與項數:
3、 有窮數列與無窮數列:
4、 遞增(減)、擺動、循環數列:
5、 數列{an}的通項公式an:
6、 數列的前n項和公式Sn:
7、 等差數列、公差d、等差數列的結構:
8、 等比數列、公比q、等比數列的結構:
二、基本公式:
9、一般數列的通項an與前n項和Sn的關系:an=
10、等差數列的通項公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項、ak為已知的第k項) 當d≠0時,an是關於n的一次式;當d=0時,an是一個常數。
11、等差數列的前n項和公式:Sn= Sn= Sn=
當d≠0時,Sn是關於n的二次式且常數項為0;當d=0時(a1≠0),Sn=na1是關於n的正比例式。

12、等比數列的通項公式: an= a1 qn-1 an= ak qn-k
(其中a1為首項、ak為已知的第k項,an≠0)
13、等比數列的前n項和公式:當q=1時,Sn=n a1 (是關於n的正比例式);
當q≠1時,Sn= Sn=
三、有關等差、等比數列的結論
14、等差數列{an}的任意連續m項的和構成的數列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍為等差數列。
15、等差數列{an}中,若m+n=p+q,則
16、等比數列{an}中,若m+n=p+q,則
17、等比數列{an}的任意連續m項的和構成的數列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍為等比數列。
18、兩個等差數列{an}與{bn}的和差的數列{an+bn}、{an-bn}仍為等差數列。
19、兩個等比數列{an}與{bn}的積、商、倒數組成的數列
{an bn}、 、 仍為等比數列。
20、等差數列{an}的任意等距離的項構成的數列仍為等差數列。
21、等比數列{an}的任意等距離的項構成的數列仍為等比數列。
22、三個數成等差的設法:a-d,a,a+d;四個數成等差的設法:a-3d,a-d,,a+d,a+3d
23、三個數成等比的設法:a/q,a,aq;
四個數成等比的錯誤設法:a/q3,a/q,aq,aq3 (為什麼?)
24、{an}為等差數列,則 (c>0)是等比數列。
25、{bn}(bn>0)是等比數列,則{logcbn} (c>0且c 1) 是等差數列。
26. 在等差數列 中:
(1)若項數為 ,則
(2)若數為 則, ,
27. 在等比數列 中:
(1) 若項數為 ,則
(2)若數為 則,
四、數列求和的常用方法:公式法、裂項相消法、錯位相減法、倒序相加法等。關鍵是找數列的通項結構。
28、分組法求數列的和:如an=2n+3n
29、錯位相減法求和:如an=(2n-1)2n
30、裂項法求和:如an=1/n(n+1)
31、倒序相加法求和:如an=
32、求數列{an}的最大、最小項的方法:
① an+1-an=…… 如an= -2n2+29n-3
② (an>0) 如an=
③ an=f(n) 研究函數f(n)的增減性 如an=
33、在等差數列 中,有關Sn 的最值問題——常用鄰項變號法求解:
(1)當 >0,d<0時,滿足 的項數m使得 取最大值.
(2)當 <0,d>0時,滿足 的項數m使得 取最小值。
在解含絕對值的數列最值問題時,注意轉化思想的應用。
六、平面向量
1.基本概念:
向量的定義、向量的模、零向量、單位向量、相反向量、共線向量、相等向量。
2. 加法與減法的代數運算:
(1) .
(2)若a=( ),b=( )則a b=( ).
向量加法與減法的幾何表示:平行四邊形法則、三角形法則。
以向量 = 、 = 為鄰邊作平行四邊形ABCD,則兩條對角線的向量 = + , = - , = -
且有| |-| |≤| |≤| |+| |.
向量加法有如下規律: + = + (交換律); +( +c)=( + )+c (結合律);
+0= +(- )=0.
3.實數與向量的積:實數 與向量 的積是一個向量。
(1)| |=| |·| |;
(2) 當 >0時, 與 的方向相同;當 <0時, 與 的方向相反;當 =0時, =0.
(3)若 =( ),則 · =( ).
兩個向量共線的充要條件:
(1) 向量b與非零向量 共線的充要條件是有且僅有一個實數 ,使得b= .
(2) 若 =( ),b=( )則 ‖b .
平面向量基本定理:
若e1、e2是同一平面內的兩個不共線向量,那麼對於這一平面內的任一向量 ,有且只有一對實數 , ,使得 = e1+ e2.
4.P分有向線段 所成的比:
設P1、P2是直線 上兩個點,點P是 上不同於P1、P2的任意一點,則存在一個實數 使 = , 叫做點P分有向線段 所成的比。
當點P在線段 上時, >0;當點P在線段 或 的延長線上時, <0;
分點坐標公式:若 = ; 的坐標分別為( ),( ),( );則 ( ≠-1), 中點坐標公式: .
5. 向量的數量積:
(1).向量的夾角:
已知兩個非零向量 與b,作 = , =b,則∠AOB= ( )叫做向量 與b的夾角。
(2).兩個向量的數量積:
已知兩個非零向量 與b,它們的夾角為 ,則 ·b=| |·|b|cos .
其中|b|cos 稱為向量b在 方向上的投影.
(3).向量的數量積的性質:
若 =( ),b=( )則e· = ·e=| |cos (e為單位向量);
⊥b ·b=0 ( ,b為非零向量);| |= ;
cos = = .
(4) .向量的數量積的運算律:
·b=b· ;( )·b= ( ·b)= ·( b);( +b)·c= ·c+b·c.
6.主要思想與方法:
本章主要樹立數形轉化和結合的觀點,以數代形,以形觀數,用代數的運算處理幾何問題,特別是處理向量的相關位置關系,正確運用共線向量和平面向量的基本定理,計算向量的模、兩點的距離、向量的夾角,判斷兩向量是否垂直等。由於向量是一新的工具,它往往會與三角函數、數列、不等式、解幾等結合起來進行綜合考查,是知識的交匯點。
七、立體幾何
1.平面的基本性質:掌握三個公理及推論,會說明共點、共線、共面問題。
能夠用斜二測法作圖。
2.空間兩條直線的位置關系:平行、相交、異面的概念;
會求異面直線所成的角和異面直線間的距離;證明兩條直線是異面直線一般用反證法。
3.直線與平面
①位置關系:平行、直線在平面內、直線與平面相交。
②直線與平面平行的判斷方法及性質,判定定理是證明平行問題的依據。
③直線與平面垂直的證明方法有哪些?
④直線與平面所成的角:關鍵是找它在平面內的射影,范圍是{00.900}
⑤三垂線定理及其逆定理:每年高考試題都要考查這個定理. 三垂線定理及其逆定理主要用於證明垂直關系與空間圖形的度量.如:證明異面直線垂直,確定二面角的平面角,確定點到直線的垂線.
4.平面與平面
(1)位置關系:平行、相交,(垂直是相交的一種特殊情況)
(2)掌握平面與平面平行的證明方法和性質。
(3)掌握平面與平面垂直的證明方法和性質定理。尤其是已知兩平面垂直,一般是依據性質定理,可以證明線面垂直。
(4)兩平面間的距離問題→點到面的距離問題→
(5)二面角。二面角的平面交的作法及求法:
①定義法,一般要利用圖形的對稱性;一般在計算時要解斜三角形;
②垂線、斜線、射影法,一般要求平面的垂線好找,一般在計算時要解一個直角三角形。
③射影面積法,一般是二面交的兩個面只有一個公共點,兩個面的交線不容易找到時用此法?

具體的公式
http://www.ggjy.net/xspd/xsbk/200408/815.html
高中數學公式大全
http://www.xyjy.cn/Article/UploadFiles/200510/20051013100307519.doc
高中數學常用公式及常用結論

高中數學常用公式及常用結論

高中數學常用公式及常用結論

1. 元素與集合的關系
, .
2.德摩根公式
.
3.包含關系

4.容斥原理

.
5.集合 的子集個數共有 個;真子集有 –1個;非空子集有 –1個;非空的真子集有 –2個.
6.二次函數的解析式的三種形式
(1)一般式 ;
(2)頂點式 ;
(3)零點式 .
7.解連不等式 常有以下轉化形式

.
8.方程 在 上有且只有一個實根,與 不等價,前者是後者的一個必要而不是充分條件.特別地, 方程 有且只有一個實根在 內,等價於 ,或 且 ,或 且 .
9.閉區間上的二次函數的最值
二次函數 在閉區間 上的最值只能在 處及區間的兩端點處取得,具體如下:
(1)當a>0時,若 ,則 ;
, , .
http://www.ggjy.net/xspd/student/200481211513358.rar

經測試可用,不過不一定是文科用的~

另提供一網站作參考:http://www.happycampus.cn/pages/2004/01/27/D128361.html

⑤ 高考時文科的數學主要都考哪些內容

高考時文科的數學主要考試內容如下:
1.函數或方程或不等式的題目,先直接思考後建立三者的聯系。首先考慮定義域,其次是函數圖象。

2.面對含有參數的初等函數來說,在研究的時候應該抓住參數有沒有影響到函數的不變的性質。如所過的定點,二次函數的對稱軸或是„„; 如果產生了影響,應考慮分類討論。
3.填空中出現不等式的題目(求最值、范圍、比較大小等),優選特殊值法;
4.求參數的取值范圍,應該建立關於參數的等式或是不等式,用函數的定義域或是值域或是解不等式完成,在對式子變形的過程中,優先選擇分離參數的方法;
5.恆成立問題或是它的反面,可以轉化為最值問題,注意二次函數的應用,靈活使用閉區間上的最值,分類討論的思想,分類討論應該不重復不遺漏;
6.圓錐曲線的題目優先選擇它們的定義完成,直線與圓錐曲線相交問題,若與弦的中點有關,選擇設而不求點差法,與弦的中點無關,選擇韋達定理公式法;使用韋達定理必須先考慮是否為二次及根的判別式問題;
7.求曲線方程的題目,如果知道曲線的形狀,則可選擇待定系數法,如果不知道
第3/4頁
曲線的形狀,則所用的步驟為建系、設點、列式、化簡(注意去掉不符合條件的特殊點);
8.求橢圓或是雙曲線的離心率,建立關於a、b、c之間的關系等式即可(多觀察圖形,注意圖形中的垂直、中點等隱含條件);個別題目考慮圓錐曲線的第二定義。
9.三角函數求周期、單調區間或是最值,優先考慮化為一次同角弦函數,然後使用輔助角公式解答;解三角形的題目,重視內角和定理的使用;與向量聯系的題目,注意向量角的范圍;
10、向量問題兩條主線:轉化為基底和建系,當題目中有明顯的對稱、垂直關系時,優先選擇建系。
11.數列的題目與和有關,優選和通公式,優選作差的方法;注意歸納、猜想之後證明;猜想的方向是兩種特殊數列;解答的時候注意使用通項公式及前n項和公式,體會方程的思想;
12.導數的題目常規的一般不難,但要注意解題的層次與步驟,如果要用構造函數證明不等式,可從已知或是前問中找到突破口,必要時應該放棄;重視幾何意義的應用,注意點是否在曲線上;
12.遇到復雜的式子可以用換元法,使用換元法必須注意新元的取值范圍,有勾股定理型的已知(即有平方關系),可使用三角換元來完成;
13.絕對值問題優先選擇去絕對值,去絕對值優先選擇使用定義;
14.與圖象平移有關的,注意口訣「左加右減,上加下減」只用於函數
15.關於中心對稱問題,只需使用中點坐標公式就可以,關於軸對稱問題,注意兩個等式的運用:一是垂直,二是中點在對稱軸上。

⑥ 高中文科數學知識點大全

高中作文語言不能太平淡,添加一些華麗的辭藻,華美的語句能加分不少。我推薦早自習可以朗誦一些現代詩歌,比如散文詩,裡面全是非常優美華麗的語句,堅持一段時間後漸漸就會有語感,語言就慢慢豐滿華潤,不再是乾巴巴的,繼續堅持,你就會發現寫作文不再那麼難,而且分數也會慢慢提高。我高一高二時語文成績一直90——100之間,後來作文上來了,幾乎60分的作文每次都能拿到50分以上,很快就突破110分了,高考時考了126分,給我很大幫助。
對於數學,其實要善於總結,將同一類型的題目歸納到一起,寫到筆記本上,慢慢積累後,做題就很簡單了。但是要對基本知識要非常熟練,數學上課我基本不聽講,就在下面作總結,每次考試都在130-140,但是高考發揮不佳,只拿了120多分。
希望對你有點幫助。

⑦ 高中數學文科知識點

高中數學知識口訣

根據多年的實踐,總結規律繁化簡;概括知識難變易,高中數學巧記憶。
言簡意賅易上口,結合課本勝一籌。始生之物形必丑,拋磚引得白玉出。
一、《集合與函數》
內容子交並補集,還有冪指對函數。性質奇偶與增減,觀察圖象最明顯。
復合函數式出現,性質乘法法則辨,若要詳細證明它,還須將那定義抓。
指數與對數函數,兩者互為反函數。底數非1的正數,1兩邊增減變故。
函數定義域好求。分母不能等於0,偶次方根須非負,零和負數無對數;
正切函數角不直,餘切函數角不平;其餘函數實數集,多種情況求交集。
兩個互為反函數,單調性質都相同;圖象互為軸對稱,Y=X是對稱軸;
求解非常有規律,反解換元定義域;反函數的定義域,原來函數的值域。
冪函數性質易記,指數化既約分數;函數性質看指數,奇母奇子奇函數,
奇母偶子偶函數,偶母非奇偶函數;圖象第一象限內,函數增減看正負。
二、《三角函數》
三角函數是函數,象限符號坐標注。函數圖象單位圓,周期奇偶增減現。
同角關系很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割;
中心記上數字1,連結頂點三角形;向下三角平方和,倒數關系是對角,
頂點任意一函數,等於後面兩根除。誘導公式就是好,負化正後大化小,
變成稅角好查表,化簡證明少不了。二的一半整數倍,奇數化余偶不變,
將其後者視銳角,符號原來函數判。兩角和的餘弦值,化為單角好求值,
餘弦積減正弦積,換角變形眾公式。和差化積須同名,互餘角度變名稱。
計算證明角先行,注意結構函數名,保持基本量不變,繁難向著簡易變。
逆反原則作指導,升冪降次和差積。條件等式的證明,方程思想指路明。
萬能公式不一般,化為有理式居先。公式順用和逆用,變形運用加巧用;
1加餘弦想餘弦,1 減餘弦想正弦,冪升一次角減半,升冪降次它為范;
三角函數反函數,實質就是求角度,先求三角函數值,再判角取值范圍;
利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集;
三、《不等式》
解不等式的途徑,利用函數的性質。對指無理不等式,化為有理不等式。
高次向著低次代,步步轉化要等價。數形之間互轉化,幫助解答作用大。
證不等式的方法,實數性質威力大。求差與0比大小,作商和1爭高下。
直接困難分析好,思路清晰綜合法。非負常用基本式,正面難則反證法。
還有重要不等式,以及數學歸納法。圖形函數來幫助,畫圖建模構造法。
四、《數列》
等差等比兩數列,通項公式N項和。兩個有限求極限,四則運算順序換。
數列問題多變幻,方程化歸整體算。數列求和比較難,錯位相消巧轉換,
取長補短高斯法,裂項求和公式算。歸納思想非常好,編個程序好思考:
一算二看三聯想,猜測證明不可少。還有數學歸納法,證明步驟程序化:
首先驗證再假定,從 K向著K加1,推論過程須詳盡,歸納原理來肯定。
五、《復數》
虛數單位i一出,數集擴大到復數。一個復數一對數,橫縱坐標實虛部。
對應復平面上點,原點與它連成箭。箭桿與X軸正向,所成便是輻角度。
箭桿的長即是模,常將數形來結合。代數幾何三角式,相互轉化試一試。
代數運算的實質,有i多項式運算。i的正整數次慕,四個數值周期現。
一些重要的結論,熟記巧用得結果。虛實互化本領大,復數相等來轉化。
利用方程思想解,注意整體代換術。幾何運算圖上看,加法平行四邊形,
減法三角法則判;乘法除法的運算,逆向順向做旋轉,伸縮全年模長短。
三角形式的運算,須將輻角和模辨。利用棣莫弗公式,乘方開方極方便。
輻角運算很奇特,和差是由積商得。四條性質離不得,相等和模與共軛,
兩個不會為實數,比較大小要不得。復數實數很密切,須注意本質區別。
六、《排列、組合、二項式定理》
加法乘法兩原理,貫穿始終的法則。與序無關是組合,要求有序是排列。
兩個公式兩性質,兩種思想和方法。歸納出排列組合,應用問題須轉化。
排列組合在一起,先選後排是常理。特殊元素和位置,首先注意多考慮。
不重不漏多思考,捆綁插空是技巧。排列組合恆等式,定義證明建模試。
關於二項式定理,中國楊輝三角形。兩條性質兩公式,函數賦值變換式。
七、《立體幾何》
點線面三位一體,柱錐檯球為代表。距離都從點出發,角度皆為線線成。
垂直平行是重點,證明須弄清概念。線線線面和面面、三對之間循環現。
方程思想整體求,化歸意識動割補。計算之前須證明,畫好移出的圖形。
立體幾何輔助線,常用垂線和平面。射影概念很重要,對於解題最關鍵。
異面直線二面角,體積射影公式活。公理性質三垂線,解決問題一大片。
八、《平面解析幾何》
有向線段直線圓,橢圓雙曲拋物線,參數方程極坐標,數形結合稱典範。
笛卡爾的觀點對,點和有序實數對,兩者-一來對應,開創幾何新途徑。
兩種思想相輝映,化歸思想打前陣;都說待定系數法,實為方程組思想。
三種類型集大成,畫出曲線求方程,給了方程作曲線,曲線位置關系判。
四件工具是法寶,坐標思想參數好;平面幾何不能丟,旋轉變換復數求。
解析幾何是幾何,得意忘形學不活。圖形直觀數入微,數學本是數形學。

⑧ 數學高考必考知識點總結有哪些

數學高考必考知識點總結有:

1、對於含參函數,奇函數沒有偶次方項,偶函數沒有奇次方項。

2、復合函數奇偶性:內偶則偶,內奇同外。

3、周期函數未必存在最小周期,如:常數函數。c.周期函數加周期函數未必是周期函數,如:y=sinxy=sin派x相加不是周期函數。

4、轉換法:當所給命題的充要條件不易判斷時,可對命題進行等價裝換,例如改用其逆否命題進行判斷。

5、當a為不同的數值時,冪函數的定義域的不同情況如下:如果a為任意實數,則函數的定義域為大於0的所有實數;如果a為負數,則x肯定不能為0。