Ⅰ 考研數學三具體內容,都要考哪些知識。
考研數學三大綱包括微積分、線性代數、概率論與數理統計。均要求理解概念,掌握表示法,會建立應用問題的函數關系。
考試內容:
一、微積分
函數、極限、連續
考試要求
1.理解函數的概念,掌握函數的表示法,會建立應用問題的函數關系.
2.了解函數的有界性.單調性.周期性和奇偶性.
3.理解復合函數及分段函數的概念,了解反函數及隱函數的概念.
4.掌握基本初等函數的性質及其圖形,了解初等函數的概念.
5.了解數列極限和函數極限(包括左極限與右極限)的概念.
6.了解極限的性質與極限存在的兩個准則,掌握極限的四則運演算法則,掌握利用兩個重要極限求極限的方法.
7.理解無窮小的概念和基本性質.掌握無窮小量的比較方法.了解無窮大量的概念及其與無窮小量的關系.
8.理解函數連續性的概念(含左連續與右連續),會判別函數間斷點的類型.
9.了解連續函數的性質和初等函數的連續性,理解閉區間上連續函數的性質(有界性、最大值和最小值定理.介值定理),並會應用這些性質.
二、一元函數微分學
考試要求
1.理解導數的概念及可導性與連續性之間的關系,了解導數的幾何意義與經濟意義(含邊際與彈性的概念),會求平面曲線的切線方程和法線方程.
2.掌握基本初等函數的導數公式.導數的四則運演算法則及復合函數的求導法則,會求分段函數的導數
會求反函數與隱函數的導數.
3.了解高階導數的概念,會求簡單函數的高階導數.
4.了解微分的概念,導數與微分之間的關系以及一階微分形式的不變性,會求函數的微分.
5.理解羅爾(Rolle)定理.拉格朗日(
Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握這四個定理的簡單應用.
6.會用洛必達法則求極限.
7.掌握函數單調性的判別方法,了解函數極值的概念,掌握函數極值、最大值和最小值的求法及其應用.
8.會用導數判斷函數圖形的凹凸性(註:在區間
內,設函數具有二階導數.當 時, 的圖形是凹的;當 時, 的圖形是凸的),會求函數圖形的拐點和漸近線.
9.會描述簡單函數的圖形.
三、一元函數積分學
考試要求
1.理解原函數與不定積分的概念,掌握不定積分的基本性質和基本積分公式,掌握不定積分的換元積分法和分部積分法.
2.了解定積分的概念和基本性質,了解定積分中值定理,理解積分上限的函數並會求它的導數,掌握牛頓一萊布尼茨公式以及定積分的換元積分法和分部積分法.
3.會利用定積分計算平面圖形的面積.旋轉體的體積和函數的平均值,會利用定積分求解簡單的經濟應用問題.
4.了解反常積分的概念,會計算反常積分.
四、多元函數微積分學
考試要求
1.了解多元函數的概念,了解二元函數的幾何意義.
2.了解二元函數的極限與連續的概念,了解有界閉區域上二元連續函數的性質.
3.了解多元函數偏導數與全微分的概念,會求多元復合函數一階、二階偏導數,會求全微分,會求多元隱函數的偏導數.
4.了解多元函數極值和條件極值的概念,掌握多元函數極值存在的必要條件,了解二元函數極值存在的充分條件,會求二元函數的極值,會用拉格朗日乘數法求條件極值,會求簡單多元函數的最大值和最小值,並會解決簡單的應用問題.
5.了解二重積分的概念與基本性質,掌握二重積分的計算方法(直角坐標.極坐標).了解無界區域上較簡單的反常二重積分並會計算.
五、無窮級數
考試要求
1.了解級數的收斂與發散.收斂級數的和的概念.
2.了解級數的基本性質和級數收斂的必要條件,掌握幾何級數及級數的收斂與發散的條件,掌握正項級數收斂性的比較判別法和比值判別法.
3.了解任意項級數絕對收斂與條件收斂的概念以及絕對收斂與收斂的關系,了解交錯級數的萊布尼茨判別法.
4.會求冪級數的收斂半徑、收斂區間及收斂域.
5.了解冪級數在其收斂區間內的基本性質(和函數的連續性、逐項求導和逐項積分),會求簡單冪級數在其收斂區間內的和函數.
6.了解 e的x次方, sin x, cos x, ln(1+x)及(1+x)的a 次方的麥克勞林(Maclaurin)展開式.
六、常微分方程與差分方程
考試要求
1.了解微分方程及其階、解、通解、初始條件和特解等概念.
2.掌握變數可分離的微分方程.齊次微分方程和一階線性微分方程的求解方法.
3.會解二階常系數齊次線性微分方程.
4.了解線性微分方程解的性質及解的結構定理,會解自由項為多項式.指數函數.正弦函數.餘弦函數的二階常系數非齊次線性微分方程.
5.了解差分與差分方程及其通解與特解等概念.
6.了解一階常系數線性差分方程的求解方法.
7.會用微分方程求解簡單的經濟應用問題.
七、線性代數
行列式
考試內容:行列式的概念和基本性質
行列式按行(列)展開定理
考試要求
1.了解行列式的概念,掌握行列式的性質.
2.會應用行列式的性質和行列式按行(列)展開定理計算行列式.
八、矩陣
考試要求
1.理解矩陣的概念,了解單位矩陣、數量矩陣、對角矩陣、三角矩陣的定義及性質,了解對稱矩陣、反對稱矩陣及正交矩陣等的定義和性質.
2.掌握矩陣的線性運算、乘法、轉置以及它們的運算規律,了解方陣的冪與方陣乘積的行列式的性質.
3.理解逆矩陣的概念,掌握逆矩陣的性質以及矩陣可逆的充分必要條件,理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣.
4.了解矩陣的初等變換和初等矩陣及矩陣等價的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的逆矩陣和秩的方法.
5.了解分塊矩陣的概念,掌握分塊矩陣的運演算法則.
九、向量
考試要求
1.了解向量的概念,掌握向量的加法和數乘運演算法則.
2.理解向量的線性組合與線性表示、向量組線性相關、線性無關等概念,掌握向量組線性相關、線性無關的有關性質及判別法.
3.理解向量組的極大線性無關組的概念,會求向量組的極大線性無關組及秩.
4.理解向量組等價的概念,理解矩陣的秩與其行(列)向量組的秩之間的關系.
5.了解內積的概念.掌握線性無關向量組正交規范化的施密特(Schmidt)方法.
十、線性方程組
考試要求
1.會用克萊姆法則解線性方程組.
2.掌握非齊次線性方程組有解和無解的判定方法.
3.理解齊次線性方程組的基礎解系的概念,掌握齊次線性方程組的基礎解系和通解的求法.
4.理解非齊次線性方程組解的結構及通解的概念.
5.掌握用初等行變換求解線性方程組的方法.
十一、矩陣的特徵值和特徵向量
考試要求
1.理解矩陣的特徵值、特徵向量的概念,掌握矩陣特徵值的性質,掌握求矩陣特徵值和特徵向量的方法.
2.理解矩陣相似的概念,掌握相似矩陣的性質,了解矩陣可相似對角化的充分必要條件,掌握將矩陣化為相似對角矩陣的方法.
3.掌握實對稱矩陣的特徵值和特徵向量的性質.
十二、二次型
考試要求
1.了解二次型的概念,會用矩陣形式表示二次型,了解合同變換與合同矩陣的概念.
2.了解二次型的秩的概念,了解二次型的標准形、規范形等概念,了解慣性定理,會用正交變換和配方法化二次型為標准形.
3.理解正定二次型.正定矩陣的概念,並掌握其判別法.
十三、概率統計
隨機事件和概率
考試要求
1.了解樣本空間(基本事件空間)的概念,理解隨機事件的概念,掌握事件的關系及運算.
2.理解概率、條件概率的概念,掌握概率的基本性質,會計算古典型概率和幾何型概率,掌握概率的加法公式、減法公式、乘法公式、全概率公式以及貝葉斯(Bayes)公式等.
3.理解事件的獨立性的概念,掌握用事件獨立性進行概率計算;理解獨立重復試驗的概念,掌握計算有關事件概率的方法.
十四、隨機變數及其分布
考試要求
.理解隨機變數的概念,理解分布函數的概念及性質,會計算與隨機變數相聯系的事件的概率.
2.理解離散型隨機變數及其概率分布的概念,掌握0-1分布、二項分布
、幾何分布、超幾何分布、泊松(Poisson)分布 及其應用.
3.掌握泊松定理的結論和應用條件,會用泊松分布近似表示二項分布.
4.理解連續型隨機變數及其概率密度的概念,掌握均勻分布 、正態分布
、指數分布及其應用,其中參數為 的指數分布 的概率密度為
5.會求隨機變數函數的分布.
十五、多維隨機變數及其分布
考試要求
1.理解多維隨機變數的分布函數的概念和基本性質.
2.理解二維離散型隨機變數的概率分布和二維連續型隨機變數的概率密度、掌握二維隨機變數的邊緣分布和條件分布.
3.理解隨機變數的獨立性和不相關性的概念,掌握隨機變數相互獨立的條件,理解隨機變數的不相關性與獨立性的關系.
4.掌握二維均勻分布和二維正態分布
,理解其中參數的概率意義.
5.會根據兩個隨機變數的聯合分布求其函數的分布,會根據多個相互獨立隨機變數的聯合分布求其函數的分布.
十六、隨機變數的數字特徵
考試要求
理解隨機變數數字特徵(數學期望、方差、標准差、矩、協方差、相關系數)的概念,會運用數字特徵的基本性質,並掌握常用分布的數字特徵.
2.會求隨機變數函數的數學期望.
3.了解切比雪夫不等式.
十七、大數定律和中心極限定理
考試要求
1.了解切比雪夫大數定律、伯努利大數定律和辛欽大數定律(獨立同分布隨機變數序列的大數定律).
2.了解棣莫弗—拉普拉斯中心極限定理(二項分布以正態分布為極限分布)、列維—林德伯格中心極限定理(獨立同分布隨機變數序列的中心極限定理),並會用相關定理近似計算有關隨機事件的概率.
十八、數理統計的基本概念
考試要求
1.了解總體、簡單隨機樣本、統計量、樣本均值、樣本方差及樣本矩的概念,其中樣本方差定義為
2.了解產生 變數、 變數和 變數的典型模式;了解標准正態分布、 分布、分布和分布得上側 分位數,會查相應的數值表.
3.掌握正態總體的樣本均值.樣本方差.樣本矩的抽樣分布.
4.了解經驗分布函數的概念和性質.
十九、參數估計
考試內容:點估計的概念 估計量與估計值 矩估計法
最大似然估計法
考試要求
1.了解參數的點估計、估計量與估計值的概念.
2.掌握矩估計法(一階矩、二階矩)和最大似然估計法.
Ⅱ 考研數學一的重點在哪
▶極限
首先是極限。極限在數一中還是占著很大的比重,考試的只要考查方式就是求極限,還有就是一些單調有界定理的使用。
導數和微分
導數的考查方式主要還是和其它的知識點相結合,很少直接給你一個函數讓你求導數。例如不等式的證明,函數單調性,凹凸性的判斷,二元函數的偏微分等等。換句話說,導數是一個基礎。
中值定理
中值定理一般會兩年至少考一次,多是以證明題的方式出現,而且常常和閉區間上的連續函數的性子相結合,以與羅爾定理為重點。
▶積分與不定積分
積分與不定積分是考試的重中之重,尤其是多元函數積分學更是每年的必考題型,平均一年會出兩道大題,而且定積分、分段函數的積分、帶絕對值的函數的積分等種種積分的求法都是重要的題型。
微分方程
微分方程中需要熟練掌握變數可分散的方程、齊次微分方程和一階線性微分方程的求解方法,以及二階常系數線性微分方程的求解,對於這些方程要能夠判斷方程類型,利用對應的求解方法,求解公式,能很快的求解。
Ⅲ 想學好考研數學必須先學會高中數學的哪些知識點
高中數學重點有什麼?該怎樣攻克?
高中數學重點內容還有很多.這些重點都是保持多年來的經驗,他們分析過高考數學的題型,高中數學重點分為以下幾個部分.
高中數學知識
一、函數和導數,函數可以說是整個高中數學的關鍵.在高中數學當中,每一個.板塊都需要函數的引導.這是高中數學的一根紐帶.在高考數學中,函數這些內容方只在30分左右,其中包括指數,對數,還有圖像的變化.考察的內容,關鍵是以填空的形式,還有選擇的形式,有的還有在解答題需要讓你畫一些圖像來正確解答.
二、數列,數列也是高中的重點內容.其實數列在初中的時候我們就經歷過,我們就學過,只不過數列在高中這個階段也是重要的一個版塊兒.他可以讓你算出錢一個數列的數值都是多少?還有等比數列,等差數列,比較好一點的就是這些不用畫圖,像你就可以算出來這一個板塊還是比較簡單,只要你記住一些死公式,往裡邊套就好.
三、三角函數,三角函數也是高中數學重點內容.三角函數的考查一般就是在誘導公式還有倆差公式或者就是證明求解.還有圖像的分析會讓你.算出圖像平移的變化,還有對稱的變化,還有一些單調性,單調區間周期性.最後一個對函數的考查就是用實際例題幾何的綜合.
四、幾何函數綜合,這種綜合題也是高考比較常見的題型,通常也在二三十分左右梯形,也就是考察一些線性的規劃,還有圓錐的定義圓錐,圓柱都是考察的重點.還會讓你算一些面積,表面積一些體積.還有側面積或者切去某塊兒部分讓你算出它的面積.
五、向量,向量這個板塊兒是必修科目當中最後一個重點板塊兒.向量我們在剛開始接觸的時候,我們會覺得它是一條射線.關鍵的就是它可以精確地算出圓柱和圓錐的位置關系還可以算出他們的加減法,但是簡答都是會有一定的位置關系和數量,關鍵都是以這種計算為主.
向量講解
其實高中數學重點就是在必修的裡面.必修是每個高中生都必須學習的,不管是分不分文理科,他們都是會學習的.很多重點都是在必修裡面,然而在選秀當中就是講一些統計之類的問題,這都是我們在生活當中就會學到的,所以這些都不是重點,重中之重就是在必修的課本當中.
Ⅳ 考研是數二的大題都考哪塊的知識點
數二隻考高數和線性代數 。
從高等數學開始,
第一章極限和連續,重中之重是求極限這個問題。
第二章一元函數微分學,這部分內容兩個重點,第一個重點是導數的計算和應用。
第三章一元函數的積分學,概括來說一個重點,就是積分的計算和應用。
第四章不是重點。
第五章多元函數微分學,第一個重點多元復合函數求偏導,多元隱函數求偏導。
第六章多元函數積分學,這一部分主要兩個重點,第一個重點二重積分的計算,另外一個重點是數一的同學要考的,考三重積分,一類線積分、二類線積分、一類面積分、二類面積分、以及相關的格林公式、高斯公式、斯托克斯公式,這是數一同學的重點。
第七章無窮級數,重點給大家歸納一下,第一級數收斂的性質與判定。
第八章微分方程,第一個重點是一階微分方程,今年考了一個一階線性非齊次微分方程求解的填空題。第二個重點是二階常系數線性微分方程。
線性代數第一章行列式,這一塊唯一的重點是行列式的計算。
第二章矩陣,同學們重點把握住矩陣的秩、逆、伴隨、初等變換,初等矩陣、分塊矩陣。
第三章向量,可以分為三個重點,第一個是向量的線性表示,第二個是線性相關,線性無關,第三向量組的極大線性無關組及秩。
第四章線性方程組,第一個重點是線性方程組解的判定問題,第二解的性質問題,第三解的結構問題。
第五章特徵值、特徵向量,也是三個重點,第一特徵值、特徵向量的定義、性質、求法。第二矩陣的相似對角化。第三個重點實對稱矩陣的性質與正交相似對角化。特別是實對稱矩陣的性質與正交相似對角化,可以說每年必考。
第六章二次型,第一個重點是二次型化為標准形,同學們必須掌握兩種方法,第一個是配方法,第二個是正交變換法。第二個重點是二次型正定的判定。
關於概率統計,第一章事件與概率,比較重要的就是三大概率公式。
第二章一維隨機變數及其分布,這章重點分兩塊,第一塊是一維隨機變數的分布,包括分布函數,分布率,密度函數。第二個重點是八個重要分布,包括五個離散型的,三個連續型。這章特別喜歡出小題。
第三章二維維隨機變數及其分布,第一個是二維隨機變數的分布,包括聯合分布,邊緣分布,條件分布。另一個重點是二維隨機變數函數的分布。這一章一定考大題,同學們必須重點關注!
第四章隨機變數的數字特徵,大家主要掌握隨機變數的期望、方差、協方差、相關系數的定義和性質。
三、四章是概率統計的重點中的重點。另外比較重要的是第六章第七章。
第六章統計初步,大家主要掌握正態總體的三個抽樣分布及八大統計量。 第七章參數估計,重點是矩估計與最大似然估計。本章考的話一般都是大題,尤其是數一的同學,特別喜歡考這章的大題。
Ⅳ 2022考研數學復習易錯知識點
一、幾個易混淆的考研數學概念
連續,可導,存在原函數,可積,可微,偏導數存在他們之間的關系是怎麼樣的?存在極 限,導函數連續,左連續,右連續,左極 限,右極 限,左導數,右導數,導函數的左極 限,導函數的右極 限。
二、羅爾定理
設函數f(x)在閉區間[a,b]上連續(其中a不等於b),在開區間(a,b)上可導,且f(a)=f(b),那麼至少存在一點ξ∈(a、b),使得f‘(ξ)=0。羅爾定理是以法國數學家羅爾的名字命名的。羅爾定理的三個已知條件的意義,①f(x)在[a,b]上連續表明曲線連通端點在內是無縫隙的曲線;②f(x)在內(a,b)可導表明曲線y=f(x)在每一點處有切線存在;③f(a)=f(b)表明曲線的割線(直線AB)平行於x軸;羅爾定理的結論的直幾何意義是:在(a,b)內至少能找到一點ξ,使f’(ξ)=0,表明曲線上至少有一點的切線斜率為0,從而切線平行於割線AB,與x軸平行。
三、泰勒公式展開的應用專題
相信很多同學看到泰勒公式就哆嗦,因為乍一看很長很恐怖,瞬間大腦空白,身體失重的感覺。其實在搞明白以下幾點後,這樣的症狀就能夠消失了。1.什麼情況下要進行泰勒展開;2.以哪一點為中心進行展開;3.把誰展開;4.展開到幾階?
四、應用多次中值定理的專題
大部分的考研數學題,一般要考察你應用多次中值定理,最重要的就是要培養自己對這種題目的敏感度,要很快反映老師出這題考哪幾個中值定理,敏感性是靠自己多練習綜合題培養出來的。比如經常去復習,那樣對中值定理的題目早已沒有那種剛學高數時的害怕之極。
五、對稱性,輪換性,奇偶性在積分(重積分,線,面積分)中的綜合應用
這類考研數學題型幾乎每年必考,要麼小題中考,要麼大題中要用,這是必須掌握的知識,但是往往不是那麼容易就靠做3,4個題目就能了解這知識點的應用到底有多廣泛。我們做積分題,尤其多重積分和線面積分,死算也許能算出結果,但是要是能用以上性質,那可真是三下五除二搞定,這方面的感覺相信大家有過,可是或許僅僅是曇花一現,因為你做出來了以為以後就一定會在相似的題目中用,其實不然,因為僅僅靠幾道題目很大程度上不能給你留下太深刻的印象,下次輪到的時候或許就是考場上了,你可能頓時苦思冥想,最終還是選擇了最傻的辦法,浪費了寶貴時間。說這些其實就是說明,考場上的正常或超常發揮是建立在平時踏實做,見識廣,嚴要求的基礎上。
2022考研數學復習易錯知識點小編就說到這里了,更多關於考研報名入口,報名時間,考研成績查詢,報名費用,考研准考證列印入口及時間等問題,小編會及時更新。希望各位考生都能進入自己的理想院校。大家一定要掌握備考技巧。
Ⅵ 如何掌握考研數學知識點
高等數學是考研數學的重中之重,所佔的比重較大,在數學一、三中佔56%,數學二中佔78%,重點難點較多。具體說來,大家需要重點掌握的知識點有幾以下幾點:
1.函數、極限與連續:主要考查極限的計算或已知極限確定原式中的常數;討論函數連續性和判斷間斷點類型;無窮小階的比較;討論連續函數在給定區間上零點的個數或確定方程在給定區間上有無實根。
2.一元函數微分學:主要考查導數與微分的定義;各種函數導數與微分的計算;利用洛比達法則求不定式極限;函數極值;方程的的個數;證明函數不等式;與中值定理相關的證明;最大值、最小值在物理、經濟等方面實際應用;用導數研究函數性態和描繪函數圖形;求曲線漸近線。
3.一元函數積分學:主要考查不定積分、定積分及廣義積分的計算;變上限積分的求導、極限等;積分中值定理和積分性質的證明;定積分的應用,如計算旋轉面面積、旋轉體體積、變力作功等。
4.多元函數微分學:主要考查偏導數存在、可微、連續的判斷;多元函數和隱函數的一階、二階偏導數;多元函數極值或條件極值在與經濟上的應用;二元連續函數在有界平面區域上的最大值和最小值。此外,數學一還要求會計算方向導數、梯度、曲線的切線與法平面、曲面的切平面與法線。
5.多元函數的積分學:包括二重積分在各種坐標下的計算,累次積分交換次序。數一還要求掌握三重積分,曲線積分和曲面積分以及相關的重要公式。
Ⅶ 研究生入學考試數學二的知識點有哪些
下屆的還沒出來,但是每年差不大,知識點就這幾個,只是有些考的比較深入
高等數學
一、函數、極限、連續
考試內容
函數的概念及表示法 函數的有界性、單調性、周期性和奇偶性 復合函數、反函數、分段函數和隱函數 基本初等函數的性質及其圖形 初等函數 函數關系的建立
數列極限與函數極限的定義及其性質 函數的左極限與右極限 無窮小量和無窮大量的概念及其關系 無窮小量的性質及無窮小量的比較 極限的四則運算 極限存在的兩個准則:單調有界准則和夾逼准則 兩個重要極限:
,
函數連續的概念 函數間斷點的類型 初等函數的連續性 閉區間上連續函數的性質
考試要求
1.理解函數的概念,掌握函數的表示法,並會建立應用問題的函數關系.
2.了解函數的有界性、單調性、周期性和奇偶性.
3.理解復合函數及分段函數的概念,了解反函數及隱函數的概念.
4.掌握基本初等函數的性質及其圖形,了解初等函數的概念.
5.理解極限的概念,理解函數左極限與右極限的概念以及函數極限存在與左極限、右極限之間的關系.
6.掌握極限的性質及四則運演算法則.
7.掌握極限存在的兩個准則,並會利用它們求極限,掌握利用兩個重要極限求極限的方法.
8.理解無窮小量、無窮大量的概念,掌握無窮小量的比較方法,會用等價無窮小量求極限.
9.理解函數連續性的概念(含左連續與右連續),會判別函數間斷點的類型.
10.了解連續函數的性質和初等函數的連續性,理解閉區間上連續函數的性質(有界性、最大值和最小值定理、介值定理),並會應用這些性質.
二、一元函數微分學
考試內容
導數和微分的概念 導數的幾何意義和物理意義 函數的可導性與連續性之間的關系 平面曲線的切線和法線 導數和微分的四則運算 基本初等函數的導數 復合函數、反函數、隱函數以及參數方程所確定的函數的微分法 高階導數 一階微分形式的不變性 微分中值定理 洛必達(L'Hospital)法則 函數單調性的判別 函數的極值 函數圖形的凹凸性、拐點及漸近線 函數圖形的描繪 函數的最大值與最小值 弧微分 曲率的概念 曲率圓與曲率半徑
考試要求
1.理解導數和微分的概念,理解導數與微分的關系,理解導數的幾何意義,會求平面曲線的切線方程和法線方程,了解導數的物理意義,會用導數描述一些物理量,理解函數的可導性與連續性之間的關系.
2.掌握導數的四則運演算法則和復合函數的求導法則,掌握基本初等函數的導數公式.了解微分的四則運演算法則和一階微分形式的不變性,會求函數的微分.
3.了解高階導數的概念,會求簡單函數的高階導數.
4.會求分段函數的導數,會求隱函數和由參數方程所確定的函數以及反函數的導數.
5.理解並會用羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解並會用柯西( Cauchy )中值定理.
6.掌握用洛必達法則求未定式極限的方法.
7.理解函數的極值概念,掌握用導數判斷函數的單調性和求函數極值的方法,掌握函數最大值和最小值的求法及其應用.
8.會用導數判斷函數圖形的凹凸性(註:在區間 內,設函數 具有二階導數.當 時, 的圖形是凹的;當 時, 的圖形是凸的),會求函數圖形的拐點以及水平、鉛直和斜漸近線,會描繪函數的圖形.
9.了解曲率、曲率圓和曲率半徑的概念,會計算曲率和曲率半徑.
三、一元函數積分學
考試內容
原函數和不定積分的概念 不定積分的基本性質 基本積分公式 定積分的概念和基本性質 定積分中值定理 積分上限的函數及其導數 牛頓-萊布尼茨(Newton-Leibniz)公式 不定積分和定積分的換元積分法與分部積分法 有理函數、三角函數的有理式和簡單無理函數的積分 反常(廣義)積分 定積分的應用
考試要求
1.理解原函數的概念,理解不定積分和定積分的概念.
2.掌握不定積分的基本公式,掌握不定積分和定積分的性質及定積分中值定理,掌握換元積分法與分部積分法.
3.會求有理函數、三角函數有理式和簡單無理函數的積分.
4.理解積分上限的函數,會求它的導數,掌握牛頓一萊布尼茨公式.
5.了解反常積分的概念,會計算反常積分.
6.掌握用定積分表達和計算一些幾何量與物理量(平面圖形的面積、平面曲線的弧長、旋轉體的體積及側面積、平行截面面積為已知的立體體積、功、引力、壓力、質心、形心等)及函數的平均值.
四、多元函數微積分學
考試內容
多元函數的概念 二元函數的幾何意義 二元函數的極限與連續的概念 有界閉區域上二元連續函數的性質 多元函數的偏導數和全微分 多元復合函數、隱函數的求導法 二階偏導數 多元函數的極值和條件極值、最大值和最小值 二重積分的概念、基本性質和計算
考試要求
1.了解多元函數的概念,了解二元函數的幾何意義.
2.了解二元函數的極限與連續的概念,了解有界閉區域上二元連續函數的性質.
3.了解多元函數偏導數與全微分的概念,會求多元復合函數一階、二階偏導數,會求全微分,了解隱函數存在定理,會求多元隱函數的偏導數.
4.了解多元函數極值和條件極值的概念,掌握多元函數極值存在的必要條件,了解二元函數極值存在的充分條件,會求二元函數的極值,會用拉格朗日乘數法求條件極值,會求簡單多元函數的最大值和最小值,並會解決一些簡單的應用問題.
5.了解二重積分的概念與基本性質,掌握二重積分的計算方法(直角坐標、極坐標).
五、常微分方程
考試內容
常微分方程的基本概念 變數可分離的微分方程 齊次微分方程 一階線性微分方程 可降階的高階微分方程 線性微分方程解的性質及解的結構定理 二階常系數齊次線性微分方程 高於二階的某些常系數齊次線性微分方程 簡單的二階常系數非齊次線性微分方程 微分方程的簡單應用
考試要求
1.了解微分方程及其階、解、通解、初始條件和特解等概念.
2.掌握變數可分離的微分方程及一階線性微分方程的解法,會解齊次微分方程.
3.會用降階法解下列形式的微分方程: 和 .
4.理解二階線性微分方程解的性質及解的結構定理.
5.掌握二階常系數齊次線性微分方程的解法,並會解某些高於二階的常系數齊次線性微分方程.
6.會解自由項為多項式、指數函數、正弦函數、餘弦函數以及它們的和與積的二階常系數非齊次線性微分方程.
7.會用微分方程解決一些簡單的應用問題.
線性代數
一、行列式
考試內容
行列式的概念和基本性質 行列式按行(列)展開定理
考試要求
1.了解行列式的概念,掌握行列式的性質.
2.會應用行列式的性質和行列式按行(列)展開定理計算行列式.
二、矩陣
考試內容
矩陣的概念 矩陣的線性運算 矩陣的乘法 方陣的冪 方陣乘積的行列式 矩陣的轉置 逆矩陣的概念和性質 矩陣可逆的充分必要條件 伴隨矩陣 矩陣的初等變換 初等矩陣 矩陣的秩 矩陣的等價 分塊矩陣及其運算
考試要求
1.理解矩陣的概念,了解單位矩陣、數量矩陣、對角矩陣、三角矩陣、對稱矩陣、反對稱矩陣和正交矩陣以及它們的性質.
2.掌握矩陣的線性運算、乘法、轉置以及它們的運算規律,了解方陣的冪與方陣乘積的行列式的性質.
3.理解逆矩陣的概念,掌握逆矩陣的性質以及矩陣可逆的充分必要條件.理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣.
4.了解矩陣初等變換的概念,了解初等矩陣的性質和矩陣等價的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的秩和逆矩陣的方法.
5.了解分塊矩陣及其運算.
三、向量
考試內容
向量的概念 向量的線性組合和線性表示 向量組的線性相關與線性無關 向量組的極大線性無關組 等價向量組 向量組的秩 向量組的秩與矩陣的秩之間的關系 向量的內積 線性無關向量組的的正交規范化方法
考試要求
1.理解 維向量、向量的線性組合與線性表示的概念.
2.理解向量組線性相關、線性無關的概念,掌握向量組線性相關、線性無關的有關性質及判別法.
3.了解向量組的極大線性無關組和向量組的秩的概念,會求向量組的極大線性無關組及秩.
4.了解向量組等價的概念,了解矩陣的秩與其行(列)向量組的秩的關系.
5.了解內積的概念,掌握線性無關向量組正交規范化的施密特(Schmidt)方法.
四、線性方程組
考試內容
線性方程組的克萊姆(Cramer)法則 齊次線性方程組有非零解的充分必要條件 非齊次線性方程組有解的充分必要條件 線性方程組解的性質和解的結構 齊次線性方程組的基礎解系和通解 非齊次線性方程組的通解
考試要求
1.會用克萊姆法則.
2.理解齊次線性方程組有非零解的充分必要條件及非齊次線性方程組有解的充分必要條件.
3.理解齊次線性方程組的基礎解系及通解的概念,掌握齊次線性方程組基礎解系和通解的求法.
4.理解非齊次線性方程組的解的結構及通解的概念.
5.會用初等行變換求解線性方程組.
五、矩陣的特徵值和特徵向量
考試內容
矩陣的特徵值和特徵向量的概念、性質 相似矩陣的概念及性質 矩陣可相似對角化的充分必要條件及相似對角矩陣 實對稱矩陣的特徵值、特徵向量及其相似對角矩陣
考試要求
1.理解矩陣的特徵值和特徵向量的概念及性質,會求矩陣特徵值和特徵向量.
2.理解相似矩陣的概念、性質及矩陣可相似對角化的充分必要條件,會將矩陣化為相似對角矩陣.
3.理解實對稱矩陣的特徵值和特徵向量的性質.
六、二次型
考試內容
二次型及其矩陣表示 合同變換與合同矩陣 二次型的秩 慣性定理 二次型的標准形和規范形 用正交變換和配方法化二次型為標准形 二次型及其矩陣的正定性
考試要求
1.了解二次型的概念,會用矩陣形式表示二次型,了解合同變換與合同矩陣的概念.
2.了解二次型的秩的概念,了解二次型的標准形、規范形等概念,了解慣性定理,會用正交變換和配方法化二次型為標准形.
3.理解正定二次型、正定矩陣的概念,並掌握其判別法.
Ⅷ 考研數學一的知識點歸納
高數部分
考研數學一高數各部分常見題型和知識點。
一. 函數、極限與連續
1 求分段函數的復合函數;
2 求極限或已知極限確定原式中的常數;
3討論函數的連續性,判斷間斷點的類型;
4 無窮小階的比較;
5討論連續函數在給定區間上零點的個數,或確定方程在給定區間上有無實 根。
二.一元函數微分學
1 求給定函數的導數與微分(包括高階導數),隱函數和由參數方程所確定的函數求導,特別是分段函數和帶有絕對值的函數可導性的討論;
2利用洛比達法則求不定式極限;
3 討論函數極值,方程的根,證明函數不等式;
4 利用羅爾定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理證明有關命題,如「證明在開區間內至少存在一點滿足......」,此類問題證明經常需要構造輔助函數;
5 幾何、物理、經濟等方面的最大值、最小值應用問題,解這類問題,主要是確定目標函數和約束條件,判定所討論區間;
6 利用導數研究函數性態和描繪函數圖形,求曲線漸近線。
三.一元函數積分學
1 計算題:計算不定積分、定積分及廣義積分;
2關於變上限積分的題:如求導、求極限等
3 有關積分中值定理和積分性質的證明題;
4定積分應用題:計算面積,旋轉體體積,平面曲線弧長,旋轉面面積,
壓力,引力,變力作功等;
5 綜合性試題.
四.向量代數和空間解析幾何
1計算題:求向量的數量積,向量積及混合積;
2 求直線方程,平面方程;
3判定平面與直線間平行、垂直的關系,求夾角;
4 建立旋轉面的方程;
5 與多元函數微分學在幾何上的應用或與線性代數相關聯的題目。
五.多元函數的微分學
1 判定一個二元函數在一點是否連續,偏導數是否存在、是否可微,偏導數是否連續;
2 求多元函數(特別是含有抽象函數)的一階、二階偏導數,求隱函數的一階、二階偏導數;
3 求二元、三元函數的方向導數和梯度;
4 求曲面的切平面和法線,求空間曲線的切線與法平面,該類型題是多元函數的微分學與前面向量代數與空間解析幾何的綜合題,應結合起來復習;
5多元函數的極值或條件極值在幾何、物理與經濟上的應用題;求一個二元連續函數在一個有界平面區域上的最大值和最小值。這部分應用題多要用到其他領域的知識,考生在復習時要引起注意。
六.多元函數的積分學
1二重、三重積分在各種坐標下的計算,累次積分交換次序;
2第一型曲線積分、曲面積分計算;
3 第二型(對坐標)曲線積分的計算,格林公式,斯托克斯公式及其應用;
4第二型(對坐標)曲面積分的計算,高斯公式及其應用;
5 梯度、散度、旋度的綜合計算;
6 重積分,線面積分應用;求面積,體積,重量,重心,引力,變力作功等。數學一考生對這部分內容和題型要引起足夠的重視。
七.無窮級數
1 判定數項級數的收斂、發散、絕對收斂、條件收斂;
2 求冪級數的收斂半徑,收斂域;
3 求冪級數的和函數或求數項級數的和;
4將函數展開為冪級數(包括寫出收斂域);
5 將函數展開為傅立葉級數,或已給出傅立葉級數,要確定其在某點的和(通常要用狄里克雷定理);
6綜合證明題。
八.微分方程
1 求典型類型的一階微分方程的通解或特解:這類問題首先是判別方程類型,當然,有些方程不直接屬於我們學過的類型,此時常用的方法是將x與y對調或作適當的變數代換,把原方程化為我們學過的類型;
2 求解可降階方程;
3 求線性常系數齊次和非齊次方程的特解或通解;
4 根據實際問題或給定的條件建立微分方程並求解;
5 綜合題,常見的是以下內容的綜合:變上限定積分,變積分域的重積分,線積分與路徑無關,全微分的充要條件,偏導數等。
Ⅸ 宇哥,請問考研高等數學中有哪些定理和公式的證明值得注意
中值定理,是反映 函數與 導數之間聯系的重要定理,也是 微積分學的理論基礎,在許多方面它都有重要的作用,下面分享考研數學中值定理證明思路,希望可以幫助大家。
一、具體考點分析
首先我們必須弄清楚這塊證明需要的理論基礎是什麼,相當於我們的工具,那需要哪些工具呢?
第一:閉區間連續函數的性質。
最值定理:閉區間連續函數的必有最大值和最小值。
推論:有界性(閉區間連續函數必有界)。
介值定理:閉區間連續函數在最大值和最小值之間中任意一個數,都可以在區間上找到一點,使得這一點的函數值與之相對應。
零點定理:閉區間連續函數,區間端點函數值符號相異,則區間內必有一點函數值為零。
第二:微分中值定理(一個引理,三個定理)
費馬引理:函數f(x)在點ξ的某鄰域U(ξ)內有定義,並且在ξ處可導,如果對於任意的x∈U(ξ),都有f(x)≤f(ξ) (或f(x)≥f(ξ) ),那麼f'(ξ)=0。
羅爾定理:如果函數f(x)滿足:
(1)在閉區間[a,b]上連續;
(2)在開區間(a,b)內可導;
在區間端點處的函數值相等,即f(a)=f(b
那麼在(a,b)內至少有一點ξ(a<ξ,使得 f?(ξ)="0.
幾何上,羅爾定理的條件表示,曲線弧 (方程為 )是一條連續的曲線弧 ,除端點外處處有不垂直於x軸的切線,且兩端點的縱坐標相等。而定理結論表明:
弧上至少有一點 ,曲線在該點切線是水平的。
拉格朗日中值定理:如果函數f(x)滿足:
(1)在閉區間[a,b]上連續;
(2)在開區間(a,b)內可導;
在區間端點處的函數值相等,即f(a)=f(b),
那麼在(a,b)內至少有一點ξ(a<ξ
加強版:如果函數 f(x) 在積分區間[a, b]上連續,則在 (a, b)上至少存在一個點 ξ,使下式成立
第四:變限積分求導定理: 如果函數f(x)在區間[a,b]上連續,則積分變上限函數在[a,b]上具有導數,並且導數為:
第五:牛頓--萊布尼茨公式:如果函數f(x) 在區間[a,b] 上連續,並且存在原函數F(x) ,則
以上定理要求理解並掌握定理內容和相應證明過程。
二、注意事項
針對上文中具體的考點,佟老師再給出幾點注意事項,這幾個注意事項也是在證明題中的"小信號",希望大家理解清楚並掌握:
1. 所有定理中只有介值定理和積分中值定理中的ξ所屬區間是閉區間。
2. 拉格朗日中值定理是函數f(x)與導函數f'(x)之間的橋梁。
3. 積分中值定理是定積分與函數之間的橋梁。
4. 羅爾定理和拉格朗日中值定理處理的對象是一個函數,而柯西中值定理處理的對象是兩個函數,如果結論中有兩個函數,形式與柯西中值定理的形式類似,這時就要想到我們的柯西中值定理。
5. 積分中值定理的加強版若在定理證明中應用,必須先證明。
其次對於中值定理證明一般分為兩大類題型:第一應用羅爾定理證明,也可又分為兩小類:證明結論簡單型和復雜型,簡單型一般有證明f'(ξ)=0,f'(ξ)=k (k為任意常數),f'(ξ1)=g'(ξ2),f''(ξ)=0,f''(ξ)=g''(ξ),
像這樣的結論一般只需要找羅爾定理的條件就可以了,一般羅爾定理的前兩個條件題目均告知,只是要需找兩個不同點的函數值相等,需找此條件一般會運用閉區間連續函數的性質、積分中值定理、拉格朗日中值定理、極限的性質、導數的定義等知識點。復雜型就是結論比較復雜,需要建立輔助函數,再使輔助函數滿足羅爾定理的條件。輔助函數的建立一般藉助於解微分方程的思想。第二就是存在兩個點使之滿足某表達式。這樣的題目一般利用拉格朗日中值定理和柯西中值定理,處理思想把結論中相同字母放到等是一側首先處理。
更多關於考研數學的內容請點擊啟道教育網考研數學。
Ⅹ 考研數學哪些章節或知識點
第一章:函數、極限、連續
考試內容
函數的概念及表示法 函數的有界性、單調性、周期性和奇偶性 復合函數、反函數、分段函數和隱函數 基本初等函數的性質及其圖形 初等函數 函數關系的建立
數列極限與函數極限的定義及其性質 函數的左極限和右極限 無窮小量和無窮大量的概念及其關系 無窮小量的性質及無窮小量的比較 極限的四則運算 極限存在的兩個准則(單調有界准則和夾逼准則)兩個重要極限:
函數連續的概念 函數間斷點的類型 初等函數的連續性 閉區間上連續函數的性質
考試要求
1、理解函數的概念,掌握函數的表示法,並會建立簡單應用問題中的函數關系。
2、了解函數的有界性、單調性、周期性和奇偶性。
3、理解復合函數及分段函數的概念,了解反函數及隱函數的概念。
4、掌握基本初等函數的性質及其圖形,了解初等函數的概念。
5、了解數列極限和函數極限(包括左極限與右極限)的概念。
6、了解極限的性質與極限存在的兩個准則,掌握極限的四則運演算法則,掌握利用兩個重要極限求極限的方法。
7、理解無窮小的概念和基本性質。掌握無窮小的比較方法。了解無窮大量的概念及其與無窮小量的關系。
8、理解函數連續性的概念(含左連續與右連續),會判別函數間斷點的類型。
9、了解連續函數的性質和初等函數的連續性,了解閉區間上連續函數的性質(有界性、最大值和最小值定理、介值定理),並會應用這些性質。
第二章:一元函數微分學
考試內容
導數和微分的概念 導數的幾何意義和經濟意義 函數的可導性與連續性之間的關系 平面曲線的切線與法線 導數和微分的四則運算 基本初等函數的導數 復合函數、反函數和隱函數的微分法高階導數 一階微分形式的不變性 微分中值定理 洛必達(L'Hospital)法則 函數的極值 函數單調性的判別 函數圖形的XXXXX性、拐點及漸近線 函數圖形的描繪函數的最大值與最小值
考試要求
1、理解導數的概念及可導性與連續性之間的關系,了解導數的幾何意義與經濟意義(含邊際與彈性的概念),會求平面曲線的切線方程和法線方程。
2、掌握基本初等函數的導數公式、導數的四則運演算法則及復合函數的求導法則,會求分段函數的導數 會求反函數與隱函數的導數。
3、了解高階導數的概念,會求簡單函數的高階導數。
4、了解微分的概念,導數與微分之間的關系以及一階微分形式的不變性,會求函數的微分。
5、理解羅爾(Rolle)定理、拉格朗日( Lagrange)中值定理、了解泰勒(Taylor)定理、柯西(Cauchy)中值定理,掌握這四個定理的簡單應用。
6、會用洛必達法則求極限。
7、掌握函數單調性的判別方法,了解函數極值的概念,掌握函數極值、最大值和最小值的求法及其應用。
8、會用導數判斷函數圖形的XXXXX性(註:在區間(a,b)內,設函數f(x)具有二階導數。當時,f(x)的圖形是凹的;當時,f(x)的圖形是凸的),會求函數圖形的拐點和漸近線。
9、會描述簡單函數的圖形。
第三章:一元函數積分學
考試內容
原函數和不定積分的概念 不定積分的基本性質 基本積分公式 定積分的概念和基本性質 定積分中值定理 積分上限的函數及其導數 牛頓一萊布尼茨(Newton- Leibniz)公式 不定積分和定積分的換元積分法與分部積分法 反常(廣義)積分 定積分的應用
考試要求
1、理解原函數與不定積分的概念,掌握不定積分的基本性質和基本積分公式,掌握計算不定積分的換元積分法和分部積分法。
2、了解定積分的概念和基本性質,了解定積分中值定理,理解積分上限的函數並會求它的導數,掌握牛頓一萊布尼茨公式,以及定積分的換元積分法和分部積分法。
3、會利用定積分計算平面圖形的面積、旋轉體的體積及函數的平均值,會利用定積分求解簡單的經濟應用問題。
4、了解反常積分的概念,會計算反常積分。
第四章:多元函數微積分學
考試內容
多元函數的概念 二元函數的幾何意義 二元函數的極限與連續的概念 有界閉區域上二元連續函數的性質 多元函數偏導數的概念與計算 多元復合函數的求導法與隱函數求導法二階偏導數 全微分 多元函數的極值和條件極值、最大值和最小值 二重積分的概念、基本性質和計算 無界區域上簡單的反常二重積分
考試要求
1、了解多元函數的概念,了解二元函數的幾何意義。
2、了解二元函數的極限與連續的概念,了解有界閉區域上二元連續函數的性質。
3、了解多元函數偏導數與全微分的概念,會求多元復合函數一階、二階偏導數,會求全微分,會求多元隱函數的偏導數。
4、了解多元函數極值和條件極值的概念,掌握多元函數極值存在的必要條件,了解二元函數極值存在的充分條件,會求二元函數的極值,會用拉格朗日乘數法求條件極值,會求簡單多元函數的最大值和最小值,並會解決某些簡單的應用題。
5、了解二重積分的概念與基本性質,掌握二重積分的計算方法(直角坐標、極坐標)。了解無界區域上較簡單的反常二重積分並會計算。
第五章:無窮級數
考試內容
常數項級數的收斂與發散的概念 收斂級數的和的概念 級數的基本性質與收斂的必要條件 幾何級數與p級數及其收斂性 正項級數收斂性的判別法 任意項級數的絕對收斂與條件收斂 交錯級數與萊布尼茨定理 冪級數及其收斂半徑、收斂區間(指開區間)和收斂域 冪級數的和函數 冪級數在其收斂區間內的基本性質 簡單冪級數的和函數的求法 初等函數的冪級數展開式
考試要求
1、了解級數的收斂與發散、收斂級數的和的概念。
2、掌握級數的基本性質和級數收斂的必要條件,掌握幾何級數及p級數的收斂與發散的條件,掌握正項級數收斂性的比較判別法和比值判別法,會用根值判別法。
3、了解任意項級數絕對收斂與條件收斂的概念以及絕對收斂與收斂的關系,掌握交錯級數的萊布尼茨判別法。
4、會求冪級數的收斂半徑、收斂區間及收斂域。
5、了解冪級數在其收斂區間內的基本性質(和函數的連續性、逐項求導和逐項積分),會求簡單冪級數在其收斂區間內的和函數,並會由此求出某些數項級數的和。
6、掌握與的麥克勞林(Maclaurin)展開式,會用它們將簡單函數間接展成冪級數。
第六章:常微分方程與差分方程
考試內容
常微分方程的基本概念 變數可分離的微分方程 齊次微分方程 一階線性微分方程 線性微分方程解的性質及解的結構定理 二階常系數齊次線性微分方程及簡單的非齊次線性微分方程 差分與差分方程的概念 差分方程的通解與特解 一階常系數線性差分方程 微分方程與差分方程的簡單應用
考試要求
1、了解微分方程及其階、解、通解、初始條件和特解等概念。
2、掌握變數可分離的微分方程、齊次微分方程和一階線性微分方程的求解方法。
3、會解二階常系數齊次線性微分方程。
4、了解線性微分方程解的性質及解的結構定理,會解自由項為多項式、指數函數、正弦函數、餘弦函數,以及它們的和與積的二階常系數非齊次線性微分方程。
5、了解差分與差分方程及其通解與特解等概念。
6、掌握一階常系數線性差分方程的求解方法。
7、會應用微分方程和差分方程求解簡單的經濟應用問題。
線性代數
第一章:行列式
考試內容
行列式的概念和基本性質 行列式按行(列)展開定理
考試要求
1.了解行列式的概念,掌握行列式的性質。
2.會應用行列式的性質和行列式按行(列)展開定理計算行列式。
第二章:矩陣
考試要求
1、理解矩陣的概念,了解單位矩陣、數量矩陣、對角矩陣、三角矩陣的定義和性質,了解對稱矩陣、反對稱矩陣及正交矩陣等的定義和性質。
2、掌握矩陣的線性運算、乘法、轉置,以及它們的運算規律,了解方陣的冪與方陣乘積的行列式的性質。
3.理解逆矩陣的概念,掌握逆矩陣的性質,以及矩陣可逆的充分必要條件,理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣.
4.了解矩陣的初等變換和初等矩陣及矩陣等價的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的逆矩陣和秩的方法。
5.了解分塊矩陣的概念,掌握分塊矩陣的運演算法則。
第三章:向量
考試內容
向量的概念 向量的線性組合與線性表示 向量組的線性相關與線性無關 向量組的極大線性無關組 等價向量組 向量組的秩 向量組的秩與矩陣的秩之間的關系 向量的內積 線形無關向量組的正交規范化方法。
考試要求
1.了解向量的概念,掌握向量的加法和數乘運演算法則。
2.理解向量的線性組合與線性表示、向量組線性相關、線性無關等概念。掌握向量組線性相關、線性無關的有關性質及判別法。
3.理解向量組的極大線性無關組的概念,會求向量組的極大線性無關組及秩。
4.了解向量組等價的概念,了解矩陣的秩與其行(列)向量組的秩之間的關系。
5.了解內積的概念、掌握線性無關向量組正交規范化的施密特(Schmidt)方法。
第四章:線性方程組
考試內容
線性方程組的克萊姆(Cramer)法則 線性方程組有解和無解的判定 齊次線性方程組的基礎解系和通解 非齊次線性方程組的解與相應的齊次線件方程組(導出組)的解之間的關系 非齊次線性方程組的通解
考試要求
1. 會用克萊姆法則解線性方程組。
2. 掌握非齊次線性方程組有解和無解的判定方法。
3. 理解齊次線性方程組的基礎解系的概念,掌握齊次線性方程組的基礎解系和通解的求法。
4. 理解非齊次線性方程組解的結構及通解的概念。
5. 掌握用初等行變換求解線性方程組的方法。
第五章:矩陣的特徵值和特徵向量
考試內容
矩陣的特徵值和特徵向量的概念、性質 相似矩陣的概念及性質 矩陣可相似對角化的充分必要條件及相似對角矩陣 實對稱矩陣的特徵值和特徵向量及相似對角矩陣。
考試要求
1. 理解矩陣的特徵值、特徵向量的概念,掌握矩陣特徵值的性質,掌握求矩陣特徵值和特徵向量的方法。
2. 理解矩陣相似的概念,掌握相似矩陣的性質,了解矩陣可相似對角化的充分必要條件,掌握將矩陣化為相似對角矩陣的方法。
3. 掌握實對稱矩陣的特徵值和特徵向量的性質。
第六章:二次型
考試內容
二次型及其矩陣表示 合同變換與合同矩陣 二次型的秩 慣性定理 二次型的標准形和規范形 用正交變換和配方法化二次型為標准形 二次型及其矩陣的正定性
考試要求
1. 了解二次型的概念,會用矩陣形式表示二次型,了解合同變換和合同矩陣的概念。
2. 了解二次型的秩的概念,了解二次型的標准形、規范形等概念,了解慣性定理,會用正交變換和配方法化二次型為標准形。
3. 理解正定二次型、正定矩陣的概念,並掌握其判別法。
概率論與數理統計
第一章:隨機事件和概率
考試內容
隨機事件與樣本空間 事件的關系與運算 完備事件組 概率的概念 概率的基本性質 古典型概率 幾何型概率 條件概率 概率的基本公式 事件的獨立性 獨立重復試驗
考試要求
1、了解樣本空間(基本事件空間)的概念,理解隨機事件的概念,掌握事件的關系及運算。
2、理解概率、條件概率的概念,掌握概率的基本性質,會計算古典型概率和幾何型概率,掌握概率的加法公式、減法公式、乘法公式、全概率公式以及貝葉斯(Bayes)公式等。
3、理解事件的獨立性的概念,掌握用事件獨立性進行概率計算;理解獨立重復試驗的概念,掌握計算有關事件概率的方法。
第二章:隨機變數及其分布
考試內容
隨機變數 隨機變數的分布函數的概念及其性質 離散型隨機變數的概率分布 連續型隨機變數的概率密度 常見隨機變數的分布 隨機變數函數的分布
考試要求
1、理解隨機變數的概念,理解分布函數的概念及性質;會計算與隨機變數相聯系的事件的概率。
2、理解離散型隨機變數及其概率分布的概念,掌握0-1分布、二項分布()、幾何分布、超幾何分布、泊松(Poisson)分布及其應用。
3、掌握泊松定理的結論和應用條件,會用泊松分布近似表示二項分布。
4、理解連續型隨機變數及其概率密度的概念,掌握均勻分布、正態分布、指數分布及其應用,其中參數為λ(λ>0)的指數分布的密度函數為
。
5、會求隨機變數函數的分布。
第三章:多維隨機變數的分布
考試內容
多維隨機變數及其分布函數 二維離散型隨機變數的概率分布、邊緣分布和條件分布 二維連續型隨機變數的概率密度、邊緣概率密度和條件密度 隨機變數的獨立性和不相關性 常見二維隨機變數的分布 兩個及兩個以上隨機變數的函數的分布
考試要求
1、理解多維隨機變數的分布函數的概念和基本性質。
2、理解二維離散型隨機變數的概率分布和二維連續型隨機變數的概率密度。掌握兩維隨機變數的邊緣分布和條件分布。
3、理解隨機變數的獨立性和不相關性的概念,掌握隨機變數相互獨立的條件;理解隨機變數的不相關性與獨立性的關系。
4、掌握二維均勻分布和二維正態分布,理解其中參數的概率意義。
5、會根據兩個隨機變數的聯合分布求其函數的分布,會根據多個相互獨立隨機變數的聯合分布求其函數的分布。