當前位置:首頁 » 基礎知識 » 小老師數學知識大全
擴展閱讀
維坊古城明數學知識 2024-11-07 14:22:08
哪個動漫里有天狗 2024-11-07 14:16:49

小老師數學知識大全

發布時間: 2022-07-18 18:11:29

Ⅰ 數學小知識

1.、王菊珍的百分數

我國科學家王菊珍對待實驗失敗有句格言,叫做「幹下去還有50%成功的希望,不幹便是100%的失敗。」

2、托爾斯泰的分數

俄國大文豪托爾斯泰在談到人的評價時,把人比作一個分數。他說:「一個人就好像一個分數,他的實際才能好比分子,而他對自己的估價好比分母。分母越大,則分數的值就越小。」
1、數學的本質在於它的自由. 康扥爾(Cantor)

2、在數學的領域中, 提出問題的藝術比解答問題的藝術更為重要. 康扥爾(Cantor)

3、沒有任何問題可以向無窮那樣深深的觸動人的情感, 很少有別的觀念能像無窮那樣激勵理智產生富有成果的思想, 然而也沒有任何其他的概念能向無窮那樣需要加以闡明. 希爾伯特(Hilbert)

4、數學是無窮的科學. 赫爾曼外爾

5、問題是數學的心臟. P.R.Halmos

6、 只要一門科學分支能提出大量的問題, 它就充滿著生命力, 而問題缺乏則預示著獨立發展的終止或衰 亡. Hilbert

7、數學中的一些美麗定理具有這樣的特性: 它們極易從事實中歸納出來, 但證明卻隱藏的極深. 高斯

3、雷巴柯夫的常數與變數

俄國歷史學家雷巴柯夫在利用時間方面是這樣說的:「時間是個常數,但對勤奮者來說,是個『變數』。用『分』來計算時間的人比用『小時』來計算時間的人時間多59倍。」

二、用符號寫格言

4、華羅庚的減號

我國著名數學家華羅庚在談到學習與探索時指出:「在學習中要敢於做減法,就是減去前人已經解決的部分,看看還有那些問題沒有解決,需要我們去探索解決。」

5、愛迪生的加號

大發明家愛迪生在談天才時用一個加號來描述,他說:「天才=1%的靈感+99%的血汗。」

6、季米特洛夫的正負號

著名的國際工人運動活動家季米特洛夫在評價一天的工作時說:「要利用時間,思考一下一天之中做了些什麼,是『正號』還是『負號』,倘若是『+』,則進步;倘若是『-』,就得吸取教訓,採取措施。」

三、用公式寫的格言

7、愛因斯坦的公式

近代最偉大的科學家愛因斯坦在談成功的秘訣時,寫下一個公式:A=x+y+z。並解釋道:A代表成功,x代表艱苦的勞動,y代表正確的方法,Z代表少說空話。」

Ⅱ 小學數學知識大全

良好的學習習慣能使孩子收益終身,尤其是小學階段,小學階段是孩子從一個天真頑劣的小孩到一個真正接受知識的小學生,從各個方面進行要求規范的時期。在這個時期良好的學習方法是孩子成績優異的關鍵,很多家長不知道如何給孩子補習小學數學,那今天就帶大家一起了解補習小學數學的五大技巧。

現在的時代是一個多元化的教育時代,孩子們的大腦不僅僅是課上的40分鍾,而是要勇於積極的探索,在給孩子補習小學數學的時候著眼於以上幾點,加上對課本知識的結合,孩子的成績定會有所提高,於此同時孩子更多的學習到的是掌握知識的方法。

Ⅲ 小學數學知識的相關基礎理論知識有哪些

小學數學學習概述
數學學習主要是對學生數學思維能力的培養。這要以數學基礎知識和基本技能為基礎,以數學問題為誘因,以數學思想方法為核心,以數學活動為主線,遵循數學的內在規律和學生的思維規律開展教學。

學習類型分析
1.方式性分類
(1)接受學習與發現學習
定義:將學習的內容以定論的形式呈現給學習者的學習方式。
模式:呈現材料—講解分析—理解領會—反饋鞏固
(2)發現學習
定義:向學習者提供一定的背景材料,由學習者獨立操作而習得知識的學習方式。
模式:呈現材料—假設嘗試—認知整合—反饋鞏固。
2.知識性分類一
(1)知識學習 定義:以理解、掌握數學基礎知識為主的學習活動。過程:選擇—領會—習得——鞏固
(2)技能學習
定義:將一連串(內部或外部的)動作經練習而形成熟練的、自動化的反應過程。
過程:演示—模仿—練習—熟練—自動化
(3)問題解決學習
以關心問題解決過程為主、反思問題解決思考過程的一種數學學習活動。
提出問題—分析問題—解決問題—反思過程
3.知識性分類二
(1)概念性(陳述性)知識的學習
把數學中的概念、定義、公式、法則、原理、定律、規則等都稱為概念性知識。
概念學習:同化與形成。
利用已有概念來學習相關新概念的方式,稱概念同化;依靠直接經驗,從大量的具體例子出發,概括出新概念的本質屬性的方式,稱為概念形成。概念形成是小學生獲得數學概念的主要形式。
(2)技能性(程序性)知識的學習
小學數學技能主要是運算技能。 運算技能的形成分為三個階段:
①認知階段:「引導式」的嘗試錯誤。從老師演算例題或自學法則中初步了解運演算法則,在頭腦中形成運算方法的表徵。②聯結階段:法則階段,即按法則一步步地運算,保證算對(使用法則解決問題,陳述性知識提供了基本的操作線索)—程序化階段(將相關的小法則整合為整體的法則系統,此時概念性知識已退出),能算得比較快速正確。③自動化階段:更清楚更熟練地應用第二階段中的程序,通過較多的練習,不再思考程序,達到一定程序的自動化,獲得了運算的速度和較高的正確率。
(3)問題解決(策略性知識)的學習
通過重組所掌握的數學知識,找出解決當前問題的適用策略和方法,從而獲得解決問題的策略的學習。
小學生解決問題的主要方式,一是嘗試錯誤式(又稱試誤法),即通過進行無定向的嘗試,糾正暫時性
嘗試錯誤,直至解決問題;二是頓悟式(也稱啟發式),好像答案或方法是突然出現的,而實際上是有一
定的「心向」作基礎的,這就是問題解決所依據的規則、原理的評價和識別。
4.任務性分類
(1)記憶操作類學習
如口算、尺規作(畫)圖和掌握基本的運演算法則並能進行准確計算等。
(2)理解性的學習
如認識並掌握概念的內涵、懂得數學原理並能用於解釋或說明、理解一個數學命題並能用於推得新命題。
(3)探索性的學習
如需要讓學生經過自己探索,發現並提出問題或學習任務,讓學生通過自己的探究能總結出一個數學規律或規則,讓學生通過自己的探究過程而逐步形成新的策略性知識等。
小學生數學認知學習
一、小學生數學認知學習的基本特徵
1.生活常識是小學生數學認知的起點
要在兒童的生活常識和數學知識之間構建一座橋梁,讓兒童從生活常識和經驗出發,不斷通過嘗試、探索和反思,從而達到「普通常識」的「數學化」。
2.小學生數學認知是一個主體的數學活動過程
數學認知過程要成為一個「做數學」的過程,讓兒童從生活常識出發,在「做數學」的過程中,去發現、了解、體驗和掌握數學,去認識數學的價值、了解數學的特性、總結數學的規律,去學會用數學、提高數學修養、發展數學能力。
3.小學生數學認知思維具有直觀化的特徵
由於一方面兒童生活常識是其數學認知的基礎,另一方面兒童思維是以直觀具體形象思維為主,所以要以直觀為主要手段,讓兒童理解並構建起數學認知結構。
4.小學生數學認知是一個「再發現」和「再創造」的過程
小學生的數學學習,主要的不是被動的接受學習,而是主動的「再發現」和「再創造」學習的過程。要讓他們在數學活動或是實踐中去重新發現或重新創造數學的概念、命題、法則、方法和原理。
二、小學生數學認知發展的基本規律
1.小學生數學概念的發展
(1)從獲得並建立初級概念為主發展到逐步理解並建立二級概念
(2)從認識概念的自身屬性逐步發展到理解概念間的關系
(3)數學概念的建立受經驗的干擾逐漸減弱
2.小學生數學技能的發展
(1)從依賴結構完滿的示範導向發展到依賴對內部意義的理解
(2)從外部的展開的思維發展到內部的壓縮的思維
(3)數感和符號意識的逐步提高,支持著運算向靈活性、簡潔性和多樣性發展
3.小學生空間知覺能力的發展
(1)方位感是逐步建立的
(2)空間概念的建立逐漸從外顯特徵的把握發展到對本質特徵的把握
(3)空間透視能力是逐步增強的
4.小學生數學問題解決能力的發展
(1)語言表述階段 (2)理解結構階段 (3)多級推理能力的形成 (4)符號運算階段
小學生數學能力的培養
一、數學能力概述
1.能力概述 能力是指個體能勝任某種活動所具有的心理特徵
2.數學能力 數學能力是順利完成數學活動所具備的,且直接影響其活動效率的一種個性心理特徵
(1)運算能力:數據運算、邏輯運算和操作運算
(2)空間想像力:依據實物建立模型、依據模型還原實物、依據模型抽象出特徵、大小和位置關系、模型或實物進行分解與組合等能力
(3)數學觀察能力:對象的概括化、知覺的形式化、對空間結構的知覺和邏輯模式的識別等能力
(4)數學記憶能力:對概括化、形式化的符號、命題、性質及空間結構、邏輯模式等識記與再現的能力
(5)數學思維能力:對已有數學信息運用數學推理的思考方式進行思維的能力。
二、兒童數學思維能力的差異性
1.產生差異的原因 (1)多元智力理論 (2)思維類型不同
2.對待差異的態度 (1)求同存異 (2)揚長避短
三、數學能力的培養
1.培養學生的數學學習興趣
(1)從學生生活經驗著手 (2)從建立問題情境開始 (3)讓學生在「做數學」中學
2.培養基本的數學能力
(1)數學操作能力動手操作既能吸引學生的注意力,又易於激發學生的思維和想像,從而調動學習積極性,培養學習興趣,使學生主動獲得知識。
在操作中,學生既「玩」了,又「學」了,也 「想」了,思維能力得到提高,學習興趣得到培養,書本知識得到理解和消化。
2.數學語言能力
在學生動手操作活動中,還要求學生通過語言表達,對數學概念逐步建立起清晰而深刻的表象,進而自覺而鞏固地掌握數學知識。
學生在表達數學時,要求語言簡潔,運用數學術語准確。嚴謹的數學態度,需要嚴謹的數學語言相伴。
3.問題解決能力
發現、提出、分析、解決數學問題的能力, 是最重要的也是最終數學能力的表現。
(1)創設問題情境,培養問題意識
有目的、有意識地創設問題情境,設障立疑,造成學生對新學知識感到有問題可想,有矛盾可解決的情境,讓學生處於「心求通而不能,口欲言而未得」。
(2)主動探索,增強學生的主體意識
①對問題進行大膽猜想、嘗試解題
從生活經驗出發提出猜想 ,從已有知識經驗基礎上提出猜想。
②通過各種形式交流猜想,選擇更優方案
(3)拓展變化,增強學生的應用意識
強調數學應用,不全是回到測量、制圖、會計等教學活動,而是培養一種應用數學知識和思想方法解決問題的慾望和方式
(4)運用所學知識,解決數學問題
生活中的數學問題很多,在教學中引導學生把生活中的問題抽象為數學問題,這樣既可以加深學生對所學知識的理解,又有助於提高解決問題的能力。如房屋裝修粉刷面積,鋪地用多少塊磚,種植面積與棵數,車輪為什麼製成圓形等。
小學數學課堂教學過程
一、小學數學教學過程的主要矛盾
1.數學教與學的矛盾
教師是主導位,學生是主體。學生是數學學習的主人,教師是數學學習的組織者、引導者與合作者。
2.小學生的認知特點與數學學科知識間的矛盾
數學的抽象性與小學生認知的具體形象性之間,數學的嚴密性與小學生認知的簡單化、直觀化之間,數學應用的廣泛性與小學生知識面窄、接觸實際生活少之間,都會產生矛盾。
3.小學生認知結構發展水平與教師傳授的
數學知識之間的矛盾 首先,教師對數學知識的傳授與學生對數學知識的理解、掌握之間就有矛盾。其次,教師的數學語言表達與學生對它的理解之間的矛盾。再次,小學生掌握的新知識與舊有知識的矛盾。
二、小學數學教學過程
1.小學數學教學過程是師生交往與互動的過程
交往的基本屬性是互動性和互惠性,交往的基本方式是對話和參與。對小學生而言,交往為他們心態的開放,主體性的凸現,創造性的解放提供了空間;對教師而言,課堂上的交往是與學生共同分享對數學的理解、共同感受學習的快樂。小學數學家教學過程是師生間、學生間的平等對話、交流的過程,這種對話、交流的內容,包括數學知識、技能的信息和情感、態度、態度價值觀等各個方面的信息。師生正是通過這種對話和交流來實現課堂中的師生之間的互動的。
有效的交往互動要注意以下兩個方面:
(1) 要充分調動小學生的主動性、積極性
數學教學過程對數學內容進行探索、實踐與思考的學習過程,學生是學習活動的主體。教師只有引導學生開展觀察、操作、比較、猜想、推理、交流等多種形式的活動,才能促使學生建構自己對數學的理解,進行掌握數學知識和技能,逐步學會從數學的角度觀察事物,思考問題,產生學習數學的興趣與願望。
(2)要實現教師角色的轉變
教師的主導作用可在以下活動中得到體現。
①調動學生的學習積極性,激發學生的學習動機,引導學生積極主動地投入到學習活動中去。 ②了解學生的想法,有針對性地引導,幫助學生解決學習困難;同時鼓勵不同的觀點,參與學生的討論,評估學習,作出調整。 ③為學生的學習創設一個良好的課堂環境和精神氛圍,引導學生開展積極主動的數學活動。
2.小學數學教學過程是老師引導學生開展數學活動的過程
(1)組織和引導學生經歷「數學化」的過程
學生數學學習應當成為「數學化」的過程。即學生從具體情境出發,經過歸納、抽象和概括等思維活動,尋找數學模型,得出數學結論的過程。教師要善於引導學生把生活經驗上升到數學知識和方法。
(2)師生共同生成與建構數學知識的過程
在學校學習的情境下,教師對於指導學生進行數學知識的建構具有重要的引導和指導作用,教師要注重引導學生有效地建構數學知識,在數學課堂教學過程中「生成」知識與方法。這種「生成」的過程正是通過師生雙方交互作用、教師的外因促使學生的內因而完成的。
(3)在活動中體驗數學,獲得數學發展的過程
小學數學教學過程應成為師生共同參與的活動過程。在這一過程中,教師為學生設計和提供有意義的情境,組織學生共同進行操作、交流、思考等活動。要給學生提供相對充分的時間和空間,讓學生獲得自主探索動手實踐的機會,從現實問題出發學習數學知識的機會,從相關學科和已有知識提出數學問題的機會,對數學內部的規律和原理進行探索和研究的機會。
3.小學數學教學過程是師生共同發展的過程
(1)促進學生的發展 小學數學教學的基本目的是促進學生的發展,為小學生終身發展奠定基礎。學生應該在數學知識與技能、數學思考、解決問題和情感態度價值觀等四個方面得到發展。這四個方面應交織、滲透,密不可分,形成一個整體。
(2)促進教師的專業成長優秀教師都是在教學實踐中成長起來的。 良好的知識結構、能力結構,專業領引,同行間的切磋、交流,不斷的自我反思,是優秀教師成長的關鍵因素。教師的專業能力包括教學設計、教學實施和教學反思等能力。教學過程必須遵循教育規律和兒童身心發展的規律,還要教師有創造性地解決師生、生生間的認知、情感和價值觀的沖突的能力,形成獨具個人魅力的教學風格,教學是一個富有個性化的創造過程。

Ⅳ 關於數學的知識有哪些

初中數學寶典,你知道學習數學最重要的是什麼嗎?
在初中學習數學這們課程的時候很多的學生都是比較煩惱的,因為這們課程是非常難的,並且難點非常多,很多的學生在剛開始學習的時候還可以更得上,但是過一段時間之後就會變得非常的吃力,那麼你知道初中數學寶典是什麼嗎?我們來了解一下吧!

復習筆記
初中數學寶典----復習
很多的學生在剛開始的時候學習這們課程不費勁但是往後可能會學的非常吃力,其實這就是因為在學習後邊的內容時將之前的內容忘掉了,所以會導致學習比較吃力,所以現在就需要用到我們的初中數學寶典--復習.
在數學的復習上,我們一定要去研究解題的思路和解題的步驟,這樣我們的成績才會提高,數學試題無論如何變化都離不開最為基本的理論,因此我們要在自己的腦海中建立一個數學的知識樹.
我們在復習數學的時候,一定要對基礎的知識進行整理和回顧,數學是一個階梯式的課程,因此我們要建立起一個數學的知識樹,我們要先在大腦中設想這棵知識樹,然後找出自己的不足所在,在進行針對性的回顧,對於那寫容易搞混的知識點,要進行梳理並且做到完全的區分,最重要的一點是,我們應該多層次的去分析問題,舉一反三,將重點放在我們的解題思路上.
數學的復習,要秉承一個原則,那就是小題突破大題穩定,我們不可能在大題上做到突破但是在小題上可以做到這一點,有意識的練習自己選擇題和填空題的答題速度,當然速度是在正確的情況下,這樣會給下面的試題留下很多的思考時間,使用各種方法來進行解答.
在數學的復習上,我們一定要去研究解題的思路和解題的步驟,這樣我們的成績才會提高,數學試題無論如何變化都離不開最為基本的理論,因此在腦海中建立一個數學的知識樹是非常必要的,這可以更快速的幫助自己解題.

復習知識點
以上就是初中數學寶典的內容,當學習吃力的時候可以先復習一下之前的內容,當然這個時候之前記得筆記就可以用來復習了,這樣可以更好的幫助我們學習後期的內容,並且可以改善學習吃力的問題.

Ⅳ 數學老師最需要了解的數與代數的哪些知識

小學數學學科主要包括數與代數、空間與圖形、統計與概率和實踐與綜合應用四個部分的內容,其中數與代數部分佔據了近50%的比重。因此這部分知識的教學是小學數學教學的重心所在,教師教學成功與否,知識的鞏固與落實直接關系著學生數學基本素養的生成。所以對本部分教材進行分析,對於我們更好的提高個人素質,把握教學要求有著重要的意義,現即從以下幾個方面對本部分知識進行分析。
一:數與代數的教學內容
一年級 1、生活中的數即學習認識10以內、100以內的數;
2、比較10以內、100以內數的大小;
3、10以內、20以內、100以內數的加減法;
4、認識鍾表;
5、購物;
二年級 1、數一數與乘法,體會乘法的意義;
2、乘法口訣的學習;
3、分一分與除法,體會除法的意義,除法與乘法的互逆關系;
4、時、分、秒;
5、乘加、乘減、除加、除減、加減混合以及兩步有括弧式題;
6、萬以內數的認識學習以及萬以內數的加減法;
三年級 1、百以內一位數乘兩位數和一位數除兩位數的口算;
2、千克、克、噸的認識學習;
3、兩位數乘一位數及連乘、三位數乘一位數、兩位數乘兩位數;
4、兩、三位數除以一位數的除法和連除、乘除混合運算及估算意識的培養;
5、年、月、日的學習;
6、分數的初步認識;
四年級 1、認識億以內的數;
2、三位數乘兩位數;
3、三位數除以整十數、三位數除以兩位數這是小學階段整數運算的最後一個學習內容;
4、負數的初步認識;
5、小數的認識及小數加減法、小數乘法、小數除法的學習;
6、認識方程;
五年級 1、倍數與因數;
2、分數的再認識;
3、分數加減法、分數乘法、分數除法的學習;
4、分數混合運算;
5、百分數的學習;
六年級 1、百分數的應用;
2、比的認識;
3、正、反比例的學習;
二:數與代數教學的具體目標
在這部分的敘述中將整個教材分為兩部分,第一學段(1---3年級)和第二學段(4---6年級)。
(一) 第一學段的具體目標
1:數的認識
(1)能認、讀、寫萬以內的數,會用數字表示物體的個數或事物的順序和位置。
(2)認識符號<,>,=的含義,能夠用符號和詞語來描述玩以內數的大小。案例:對於50,98,38,10,51這些數,請用大一些、小一些、大得多、小得多等語言描述它們之間的大小關系;並用「<」或「>」表示它們的大小關系。
(3)能說出各數位的名稱,識別各數位上數字的意義。
(4)結合現實素材感受大數的意義,並能進行估計。案例1:1200張紙大約有多厚?1200名學生大約能組成多少個班級?1200步大約有多長?案例2:估計一張報紙一個版面的字數。
(5)能結合具體情境初步理解分數的意義,能認、讀、寫小數和簡單的分數。
(6)能運用數表示日常生活中的一些事物,並進行交流。案例:請你說出與日常生活密切相關的一些數及其作用。
2:數的運算
(1)結合具體情境,體會四則運算的意義。在此強調:關於乘法,3個5,可以寫作3×5,也可以寫作5×3.
(2)能熟練的口算20以內的加減法和表內乘除法,會口算百以內的加減法。
(3)能計算三位數的加減法,一位數乘三位數、兩位數乘兩位數的乘法,三位數除以一位數的除法。
(4)會計算同分母分數的(分母小於10)的加減運算以及一位小數的加減運算。
(5)能結合具體情境進行估算,並解釋估算的過程。案例:如果公園的門票每張8元,某校組織97名同學去公園玩,帶800元夠不夠?
(6)經歷與他人交流各自演算法的過程。
(7)能靈活運用不同的方法解決生活中的簡單問題,並能對結果的合理性進行判斷。案例:每條小船限乘4人,17人需要租幾條船?你認為怎樣分配才合適?
3:常見的量
(1)在現實情境中,認識元、角、分,並了解它們之間的關系。
(2)能認識鍾表,了解24時計時法;結合自己的生活經驗,體驗時間的長短。案例:估計每分脈搏跳動的次數、閱讀的次數、跳繩的次數、走路的步數。
(3)認識年、月、日,了解它們之間的關系。
(4)在具體生活情境中,感受並認識克、千克、噸,並能進行簡單的換算。
(5)結合生活實際,解決與常見的量有關的簡單問題。
4:探索規律
發現給定的事物中隱含的簡單規律。案例:在下列橫線上填上合適的數字,並說明理由:1,1,2,1,1,2,---,---,---;
(二)第二學段的具體目標
1:數的認識
(1)在具體的情境中,認、讀、寫億以內的數,了解十進制計數法,會用萬、億為單位表示大數。
(2)進一步認識小數和分數,認識百分數;探索小數、分數和百分數之間的關系,並會進行轉化(不包括將循環小數化為分數)。
(3)會比較小數、分數和百分數的大小。
(4)在熟悉的生活情境中,了解負數的意義,會用負數表示一些日常生活中的問題。
(5)結合現實情境感受大數的意義,並能進行估計。案例:一個正常人心跳100萬次大約需要多長時間?100萬小時相當於多少年?100萬張紙有多厚?
(6)進一步體會數在日常生活中的作用,會運用數表示事物,並能進行交流。案例1:某學校為每個學生編號,設定末尾用1表示男生,用2表示女生;9713321表示「1997年入學的一年級三班的32名同學,該同學是男生。」那麼,9532012表示的學生是哪一年入學的?幾年級幾班的?學號是多少?是男生還是女生?
(7)在1—100的自然數中,能找出10以內某個自然數的所有公倍數,並指導2,3,5的倍數的特徵,能找出10以內兩個自然數的公倍數和最小公倍數。
(8)在1-100的自然數中,能找出某個自然數的所有因數,能找出兩個自然數的公因數和最大公因數。
(9)知道整數、奇數、偶數、質數、合數。
2.數的運算
(1)會口算百以內的一位數乘、除兩位數。
(2)、能筆算三位數乘兩位數的乘法、三位數除以兩位數的除法。
(3)能結合現實素材理解運算順序,並進行簡單的整數四則混合運算(以兩步為主,不超過三步)。
(4)探索和理解運算定律,能運用運算定律進行一些簡便運算。
(5)在具體運算和解決簡單實際問題的過程中,體會加與減、乘與除的互逆關系。
(6)會分別進行簡單的小數、分數(不含帶分數)加、減、乘、除運算及混合運算(以兩步為主,不超過三步)。
(7)會解決有關小數、分數和百分數的簡單實際問題。
(8)在解決具體問題的過程中,能選擇合適的估算方法,養成估算的習慣。案例1:李阿姨想買2袋米(每袋35.4元)、14.8元的牛肉、6.7元的蔬菜和12.8元的魚。李阿姨帶了100元,夠嗎?案例2:9.2×7.1的結果大約是多少?1/2﹢4/7的結果比1大嗎?
(9)能藉助計算器進行較復雜的運算,解決簡單的實際問題,探索簡單的數學規律。案例:任意給定四個互不相同的數字,組成最大數和最小數,並用最大數減去最小數。對所得結果的四個數字重復上述過程,你會發現什麼呢?(利用計算器)
3.式與方程
(1)在具體情境中會用字母表示數。
(2)會用方程表示簡單情境中的等量關系。
(3)理解等式的性質,會用等式的性質解簡單的方程。
4.正比例、反比例
(1)在實際情境中理解什麼是按比例分配,並能解決簡單的問題。
(2)通過具體問題認識成正比例,反比例的量。
(3)能根據給出的有正比例關系的數據在有坐標系的方格紙上畫圖,並根據其中一個量的值估計另一個量的值。案例:綵帶每米售價4元,購買2米、3米、……綵帶分別需要多少錢?
填一填:
長度(米) 0 1 2 3 4 5 6 7 ……
價錢(元) 0 4
把上表中長度和價錢所對應的點描在坐標紙上,再順次連接起來,並回答下列問題:
a.所描的點是否在一條直線上?
b.估計一下買1.5米的綵帶大約要花多少元?
c.小剛買的綵帶長度是小紅的3倍,他所花的錢是小紅的幾倍?
(4)能找出生活中成正比例和反比例量的實例,並進行交流。
5.探索規律
探求給定事物中隱含的規律或變化趨勢。案例:聯歡會上,小明按照3個紅氣球、2個黃氣球、1個綠氣球的順序把氣球串起來裝飾室。你知道第16個氣球是什麼顏色嗎?
三:數與代數的教材編寫特點
與傳統教材相比較,本教材更強調通過實際情境使學生體驗、感受和理解數及運算的意義,體會數及其運算模型的建立過程,強調發展學生的數感、符號感,注重培養學生運用數與運算解決簡單實際問題的意識和能力。
(一 )數的認識
數是數學學習的基本內容,它有著重要的意義和作用。
1.注重從現實情境中讓學生逐步體會數的含義,發展學生的數感。無論是整數、分數、小數,還是負數的產生與發展,都是人類生活實踐的總結,都是與解決實際問題緊密聯系的。因此教材十分關注數語現實世界的聯系,努力揭示從現實世界中抽象出數的過程,突出數作為模型的作用。
2.提供豐富的素材,讓學生理解數的相對大小關系,獲得對大數的感受。比較數的大小是數的學習的重要內容,教材不僅僅停留在單純地比較兩個抽象數之間的大小關系,而且提供了較為豐富的素材,使學生能在具體情境中把握數的相對大小關系,這是發展學生數感的重要方面。
3.使學生能運用數表示日常生活中的一些事物,並進行交流。
(二)數的運算
我國數學課程一直將數的運算作為小學數學的主要內容,重視培養學生的運算能力。在數的運算內容中注重了以下幾個方面:
1.經歷從實際情境抽象出運算的過程,關注對運算的理解。關於數的運算內容的設計,教材首先注重使學生經歷從實際情境中抽象出運算的過程,關注對運算意義的理解;建立實際操作與數學運算的內在聯系,使學生在實際操作中,產生直覺經驗,找到數的運算的現實背景,促進學生理解運算的含義及其性質,並能自覺地運用於解決應用題之中。
2.重視估算,能估計運算的結果。估算能幫助學生發展對數及其運算的理解,增強他們運用數及運算的靈活性,促進他們對結論的合理性的認識,也有利於減少運算中的錯誤,培養學生對運算結果負責的態度。因此本教材重視估算能力的培養。
3.鼓勵運算方法的多樣化。學生在嘗試計算的過程中,會從自己的經驗和思考角度出發,產生不同的運算方法,在教學中,教師對於合理的演算法都要予以鼓勵,培養學生的自信心。
4.掌握基本的運演算法則和筆算技能,避免繁雜的運算。本教材注重學生對運演算法則的探索和基本技能的掌握,並根據學生的認知特點,採取豐富多彩的形式保證他們技能的掌握,激發他們的學習興趣。
5.利用計算器解決實際問題和探索規律。數學課程重視運用現代技術手段,將學生從大量繁雜、重復的運算中解救出來,把更多的經歷投入到現實的、探索性的數學活動中去。
6.能有效的解決實際問題,是學生學習數與運算的的首要目標。我們在此談談對應用題的改革
第一,精簡缺乏實際背景的、技巧性過高的算術應用題,增加一些富有現實意義、與學生經驗相符合的、具有一定數學價值具備一定探索性的問題。
第二,將解決實際問題作為數與運算學習的自然組成部分。
第三,淡化人為編制的應用題,強調對問題實際意義和數學意義的真正理解,鼓勵學生尋找問題中所隱含的數量關系,並根據所學數學知識的意義加以解決。
第四,重視解決問題的多樣化。
第五,教材注重以多種形式提供信息、呈現問題。
第六、強調對問題的解加以檢驗,不僅僅是檢驗解是否正確,更重要的是考察問題的解是否符合實際。
(三)常見的量
對於常見的量的學習,教材強調藉助學生的生活經驗,理解量的實際意義,從多種角度體會量的單位的實際意義;能根據實際問題選擇合適的量的單位;能進行簡單的單位換算;結合生活實際,解決與常見的量有關的實際問題。
(四)探索規律
建立模式、考察模式、尋求規律,是數學學習的重要內容。本套教材設計了大量探索規律的活動,具體來說有以下幾方面:
第一、強調數與運算中蘊涵的數量關系。
第二、提供機會幫助學生從多種角度去發現數、圖形等蘊涵的變化規律,並運用自己的語言加以描述。
第三、使學生認識某些特殊關系。
第四、在方程的學習中注重符號表示和方程模型的作用。
四:數與代數的教學建議
1.在教學中重視創設情境,引導學生聯系自己身邊具體、有趣的事物,通過觀察、操作、解決問題等豐富的活動,感受數的意義,理解數的意義,建立數感。正確把握標准,不提高對學生的要求,不任意人為地增加難度。
例如:一年級教學學生理解數的意義時,可以讓學生聯系校園中的事物去數、去描述教室里有幾扇窗戶、幾張桌子、一組有幾個同學……從而體會數具有表示物體個數的含義和作用;對於0的理解,更要聯系實際,結合學生生活經驗,理解0在不同情境中的不同含義。
三年級小數的認識時,從學生熟悉的購物開始,初步理解小數的意義;教師在此教學時,萬萬不可提高要求,讓學生去准確的敘述小數的意義,這樣會影響到學生學習數學的興趣,只要學生會運用小數表示日常生活中的一些事物,並會交流即可,不要人為地增加學習的難度,小數的進一步學習在四年級。
三年級認識分數內容教學時,同樣只是讓學生結合具體情境與直觀操作初步理解分數的意義,讓學生明白分時必須是平均分即可,不必強制要求學生敘述分數的准確含義。更為深入、細致的學習則是在五年級第一學期分數的再認識。
2.在數的運算教學時,要重視學生估算能力的培養,積極倡導計算方法的多樣化,讓學生在探索比較中切實理解運算方法。
(1)教師要重視口算的訓練,口算能力的強弱直接決定著學生筆算能力,教材在第五冊專門安排了一個口算乘除法的單元。這是學生在掌握了表內乘除法的基礎上展開教學的,它是學生學習多位數乘除法的基礎。教師要重視這一單元的學習,並在教學時,對學生合理的口算方法予以鼓勵,在交流、探索中發現相對優化的口算方法。
(2)重視學生估算能力的培養。我們在平時的教學中,對估算的重視程度不夠,甚至有些教師對估算章節的內容放棄不講或一筆帶過,個別教師讓學生在估算前,先精確計算,再適當變化即為最後的估算結果。這樣的教學其實是扭曲了估算的意義,曲解了編者的意圖,本末倒置。因此,我們在教學中要先培養學生的估算意識,通過設計情境,使學生體會到估算的必要性,估算的價值;再在實際訓練時,具體計算時,讓學生先估一估,後計算,逐步培養學生的估算能力。
(3)鼓勵運算方法多樣化,由於個人的生活經驗、思維習慣、理解能力不盡相同,所以在解決問題時會有不同的方法產生,這時教師要有耐心,給學生足夠的空間、時間,讓他們去獨立的思考、嘗試解決,對於合理的、獨特的演算法應予以肯定、鼓勵,從中師生共同選取最優的計算方法,不要直接將通用方法告訴給學生,其實我們在耐心傾聽學生發言時,對我們也是一種學習,可以隨時調整自己的教學策略,反思個人教學。
(4)四則運算方法的教學要切實讓學生掌握其運算實質,這樣才會舉一反三,融會貫通。
加減法的教學,學生在初次接觸加減法運算時,即整數相加相減,一定要強調相同數位對齊才能計算,也就是說相同計數單位才能相加減,只有把這一運算實質了解,那麼在小數加減法時,自然小數點就對齊了,分數加減法時,只有同分母才能直接計算,學生也就不難理解了。
乘除法的教學,整數乘除法教學,必須強化訓練讓學生理解運算過程,才會為小數乘除法的運算打下堅定的基礎。
3、應用題的教學策略
算術應用題是傳統小學數學課程的重要內容,目的是培養學生運用數學運算的內容解決實際問題的能力。現在的教材把這部分內容定為能有效地解決日常生活中的實際問題,所以我們教師在進行本部分內容教學時,要把握好以下幾點:
(1)、從低年級就開始培養學生在所給的情境圖中找數學信息,並根據已有的數學信息提出相應的問題,如:圖中有以下信息,鴨子6隻,小猴3隻,小松鼠2隻,小鳥12隻,孔雀1隻,小雞8隻,你能根據這些信息提出一個用除法解決的問題嗎?這時學生會用已學的倍數知識去選擇相關信息去提問題;還可以反過來訓練:要解決一個問題你得知道哪些信息?如:二年級比三年級少多少人?要解決這個問題學生肯定會想到,還要知道二年級有多少人?三年級有多少人?這兩個信息,我們老師不要小看這樣的訓練,實際上在這里學生已將運算意義內化了,走出了可喜的一步,值得鼓勵,這其實也是在為我們後面解決復雜的問題打基礎。
(2)、聯系生活實際,讓學生明白數學來源於生活,生活中處處有數學,應用題的教學應從學生熟悉的生活入手,先消除學生思想上的畏難情緒,讓他們從生活中理解數學,感悟數學。比如說:家裡要裝修房子,給客廳鋪地磚需要多少塊,能花多少錢?這樣的問題很實際,學生參與的熱情很高,讓他們合作,利用休息時間去市場調查,找出要解決這兩個問題所需要的一些數學信息,如客廳的面積,每塊地磚的大小、單價等,從而提取有價值的信息來解決問題。在解決問題的過程中,也能培養學生的合作能力,社交能力。
(3)、分析法、綜合法這些應用題的傳統解題方法依然要用,分析法就是從問題入手,要解決這個問題需要什麼條件;綜合法就是從已有條件入手,從這兩個條件可以得到什麼結果。其實這部分訓練我們在低年級的時候我們就進行過,現在是進一步深入,若一步不能完成則需要學生繼續分析直至解決這個問題。
注重創設情境,聯系已有經驗學習數學,體會教材的特點,我們只有很好的把握了教材的特徵,認真研讀課標,明確每一冊知識的縱向橫向聯系,那麼就一定能取得令人矚目的成績。

Ⅵ 數學小知識,要六年級的。

1、楊輝三角是一個由數字排列成的三角形數表,一般形式如下:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

… … … … …

楊輝三角最本質的特徵是,它的兩條斜邊都是由數字1組成的,而其餘的數則是等於它肩上的兩個數之和。其實,中國古代數學家在數學的許多重要領域中處於遙遙領先的地位。中國古代數學史曾經有自己光輝燦爛的篇章,而楊輝三角的發現就是十分精彩的一頁。楊輝,字謙光,北宋時期杭州人。在他1261年所著的《詳解九章演算法》一書中,輯錄了如上所示的三角形數表,稱之為「開方作法本源」圖。而這樣一個三角在我們的奧數競賽中也是經常用到,最簡單的就是叫你找規律。現在要求我們用編程的方法輸出這樣的數表。

2、一個故事引發的數學家
陳景潤一個家喻戶曉的數學家,在攻克歌德巴赫猜想方面作出了重大貢獻,創立了著名的「陳氏定理」,所以有許多人親切地稱他為「數學王子」。但有誰會想到,他的成就源於一個故事。 1937年,勤奮的陳景潤考上了福州英華書院,此時正值抗日戰爭時期,清華大學航空工程系主任留英博士沈元教授回福建奔喪,不想因戰事被滯留家鄉。幾所大學得知消息,都想邀請沈教授前進去講學,他謝絕了邀請。由於他是英華的校友,為了報達母校,他來到了這所中學為同學們講授數學課。 一天,沈元老師在數學課上給大家講了一故事:「200年前有個法國人發現了一個有趣的現象:6=3+3,8=5+3,10=5+5,12=5+7,28=5+23,100=11+89。每個大於4的偶數都可以表示為兩個奇數之和。因為這個結論沒有得到證明,所以還是一個猜想。大數學歐拉說過:雖然我不能證明它,但是我確信這個結論是正確的。 它像一個美麗的光環,在我們不遠的前方閃耀著眩目的光輝。……」陳景潤瞪著眼睛,聽得入神。
從此,陳景潤對這個奇妙問題產生了濃厚的興趣。課余時間他最愛到圖書館,不僅讀了中學輔導書,這些大學的數理化課程教材他也如飢似渴地閱讀。因此獲得了「書獃子」的雅號。 興趣是第一老師。正是這樣的數學故事,引發了陳景潤的興趣,引發了他的勤奮,從而引發了一位偉大的數學家。

3、為科學而瘋的人
由於研究無窮時往往推出一些合乎邏輯的但又荒謬的結果(稱為「悖論」),許多大數學家唯恐陷進去而採取退避三舍的態度。在1874—1876年期間,不到30歲的年輕德國數學家康托爾向神秘的無窮宣戰。他靠著辛勤的汗水,成功地證明了一條直線上的點能夠和一個平面上的點一一對應,也能和空間中的點一一對應。這樣看起來,1厘米長的線段內的點與太平洋面上的點,以及整個地球內部的點都「一樣多」,後來幾年,康托爾對這類「無窮集合」問題發表了一系列文章,通過嚴格證明得出了許多驚人的結論。
康托爾的創造性工作與傳統的數學觀念發生了尖銳沖突,遭到一些人的反對、攻擊甚至謾罵。有人說,康托爾的集合論是一種「疾病」,康托爾的概念是「霧中之霧」,甚至說康托爾是「瘋子」。來自數學權威們的巨大精神壓力終於摧垮了康托爾,使他心力交瘁,患了精神分裂症,被送進精神病醫院。
真金不怕火煉,康托爾的思想終於大放光彩。1897年舉行的第一次國際數學家會議上,他的成就得到承認,偉大的哲學家、數學家羅素稱贊康托爾的工作「可能是這個時代所能誇耀的最巨大的工作。」可是這時康托爾仍然神志恍惚,不能從人們的崇敬中得到安慰和喜悅。1918年1月6日,康托爾在一家精神病院去世。
康托爾(1845—1918),生於俄國彼得堡一丹麥猶太血統的富商家庭,10歲隨家遷居德國,自幼對數學有濃厚興趣。23歲獲博士學位,以後一直從事數學教學與研究。他所創立的集合論已被公認為全部數學的基礎。

4、數學家的「健忘」

我國數學家吳文俊教授六十壽辰那天,仍如往常,黎明即起,整天浸沉在運算和公式中。
有人特地選定這一天的晚間登門拜門拜訪,寒暄之後,說明來意:「聽您夫 人說,今天是您六十大壽,特來表示祝賀。」 吳文俊彷彿聽了一件新聞,恍然大悟地說:「噢,是嗎?我倒忘了。」 來人暗暗吃驚,心想:數學家的腦子里裝滿了數字,怎麼連自己的生日也記不住?
其實,吳文俊對日期的記憶力是很強的。他在將近花甲之年的時候,又先攻 了一個難題——「機器證明」。這是為了改變了數學家「一支筆、一張紙、一個腦袋」的勞動方式,運用電子計算機來實現數學證明,以便數學家能騰出更多的時間來進行創造性的工作,他在進行這項課題的研究過程中,對於電子計算機安裝的日期、為計算機最後編成三百多道「指令」程序的日期,都記得一清二楚。
後來,那位祝壽的來客在閑談中問起他怎麼連自己生日也記不住的時候,他知著回答:
「我從來不記那些沒有意義的數字。在我看來,生日,早一天,晚一天,有 什麼要緊?所以,我的生日,愛人的生日,孩子的生日,我一概不記,他從不想 要為自己或家裡的人慶祝生日,就連我結婚的日子,也忘了。但是,有些數字非記不可,也很容易記住……」

5、蘋果樹下的例行出步

1884年春天,年輕的數學家阿道夫·赫維茨從哥廷根來到哥尼斯堡擔任副教授,年齡還不到25歲,在函數論方面已有出色的研究成果.希爾伯特和閩可夫斯基很快就和他們的新老師建立了密切的關系.他們這三個年輕人每天下午准5點必定相會去蘋果樹下散步.希爾伯特後來回憶道:「日復一日的散步中,我們全都埋頭討論當前數學的實際問題;相互交換我們對問題新近獲得的理解,交流彼此的想法和研究計劃.」在他們三人中,赫維茨有著廣泛「堅實的基礎知識,又經過很好的整理,」所以他是理所當然的帶頭人,並使其他兩位心悅誠服.當時希爾伯特發現,這種學習方法比鑽在昏暗的教室或圖書館里啃書本不知要好多少倍,這種例行的散步一直持續了整整八年半之久.以這種最悠然而有趣的學習方式,他們探索了數學的「每一個角落」,考察著數學世界的每一個王國,希爾伯特後來回憶道:「那時從沒有想到我們竟會把自己帶到那麼遠!」三個人就這樣「結成了終身的友誼.」

6、報效祖國宏願--華羅庚的故事

同學們都知道,華羅庚是一位靠自學成才的世界一流的數學家。他僅有初中文憑,因一篇論文在《科學》雜志上發表,得到數學家熊慶來的賞識,從此華羅庚北上清華園,開始了他的數學生涯。 1936年,經熊慶來教授推薦,華羅庚前往英國,留學劍橋。20世紀聲名顯赫的數學家哈代,早就聽說華羅庚很有才氣,他說:"你可以在兩年之內獲得博士學位。"可是華羅庚卻說:"我不想獲得博士學位,我只要求做一個訪問者。""我來劍橋是求學問的,不是為了學位。"兩年中,他集中精力研究堆壘素數論,並就華林問題、他利問題、奇數哥德巴赫問題發表18篇論文,得出了著名的"華氏定理",向全世界顯示了中國數學家出眾的智慧與能力。
1946年,華羅庚應邀去美國講學,並被伊利諾大學高薪聘為終身教授,他的家屬也隨同到美國定居,有洋房和汽車,生活十分優裕。當時,不少人認為華羅庚是不會回來了。新中國的誕生,牽動著熱愛祖國的華羅庚的心。1950年,他毅然放棄在美國的優裕生活,回到了祖國,而且還給留美的中國學生寫了一封公開信,動員大家回國參加社會主義建設。他在信中坦露出了一顆愛中華的赤子之心:"朋友們!梁園雖好,非久居之鄉。歸去來兮……為了國家民族,我們應當回去……"雖然數學沒有國界,但數學家卻有自己的祖國。
華羅庚從海外歸來,受到黨和人民的熱烈歡迎,他回到清華園,被委任為數學系主任,不久又被任命為中國科學院數學研究所所長。從此,開始了他數學研究真正的黃金時期。他不但連續做出了令世界矚目的突出成績,同時滿腔熱情地關心、培養了一大批數學人才。為摘取數學王冠上的明珠,為應用數學研究、試驗和推廣,他傾注了大量心血。
據不完全統計,數十年間,華羅庚共發表了152篇重要的數學論文,出版了9部數學著作、11本數學科普著作。他還被選為科學院的國外院士和第三世界科學家的院士。

7、中西文化交流之倡導者

萊布尼茲對中國、的科學、文化和哲學思想十分關注,是最早研究中國文化和中國哲學的德國人。他向耶酥會來華傳教士格里馬爾迪了解到了許多有關中國的情況,包括養蠶紡織、造紙印染、冶金礦產、天文地理、數學文字等等,並將這些資料編輯成冊出版。他認為中西相互之間應建立一種交流認識的新型關系。在《中國近況》一書的緒論中,萊布尼茲寫道:「全人類最偉大的文化和最發達的文明彷彿今天匯集在我們大陸的兩端,即匯集在歐洲和位於地球另一端的東方的歐洲——中國。」「中國這一文明古國與歐洲相比,面積相當,但人口數量則已超過。」「在日常生活以及經驗地應付自然的技能方面,我們是不分伯仲的。我們雙方各自都具備通過相互交流使對方受益的技能。在思考的縝密和理性的思辯方面,顯然我們要略勝一籌」,但「在時間哲學,即在生活與人類實際方面的倫理以及治國學說方面,我們實在是相形見拙了。」在這里,萊布尼茲不僅顯示出了不帶「歐洲中心論」色彩的虛心好學精神,而且為中西文化雙向交流描繪了宏偉的藍圖,極力推動這種交流向縱深發展,是東西方人民相互學習,取長補短,共同繁榮進步。萊布尼茲為促進中西文化交流做出了畢生的努力,產生了廣泛而深遠的影響。他的虛心好學、對中國文化平等相待,不含「歐洲中心論」偏見的精神尤為難能可貴,值得後世永遠敬仰、效仿。

8、《孫子算經》是唐初作為「算學」教科書的著名的《算經十書》之一,共三卷,上卷敘述算籌記數的制度和乘除法則,中卷舉例說明籌算分數法和開平方法,都是了解中國古代籌算的重要資料。下卷收集了一些算術難題,「雞兔同籠」問題是其中之一。原題如下: 令有雉(雞)兔同籠,上有三十五頭,下有九十四足。

問雄、兔各幾何?

原書的解法是;設頭數是a,足數是b。則b/2-a是兔數,a-(b/2-a)是雉數。這個解法確實是奇妙的。原書在解這個問題時,很可能是採用了方程的方法。

設x為雉數,y為兔數,則有

x+y=b, 2x+4y=a

解之得

y=b/2-a,

x=a-(b/2-a)

根據這組公式很容易得出原題的答案:兔12隻,雉22隻。

Ⅶ 數學知識(小學)

美麗的數學

今天中午,為了能把筷子體積測得更准確,我叫爸爸從化學室拿了一個細長的量筒,刻度單位更小,每個單位只有1立方厘米。此時,我似乎感覺到了勝利在向我招手,真可謂萬事具備,只差動手實驗了。
首先,我用鉛筆在一次性筷子上劃了一道分界線,將筷子平均分成兩段,並用水浸泡,以免筷子在測定過程中洗水。隨後,將筷子插入量筒中,並用滴管將水滴入量筒中,讓量筒內的水漲到筷子的分界線上,記下量筒內的水位刻度(38毫升)後,將筷子從量筒內取出,再記下量筒內的水位刻度(34.5毫升),前後兩次水位刻度之差就是這一部分筷子的體積,即3.5立方厘米。用同樣的方法,我又測量了筷子另一部分的體積是5立方厘米,兩次測定結果相加得到這雙筷子的體積為8.5立方厘米。當我得到這個結果時,我興奮地叫了,此時的我是多麼自豪、多麼驕傲啊!
接著,我又按每人一天使用3雙計算出了我們學校(1500人)及全國(12億)一年消耗的一次性筷子量,分別是13.96立方米和11169000立方米。結果使我大吃一驚,每年竟有這么多的木料做成一次性筷子被浪費了,真是太可惜!在此,我呼籲在校的同學,不!是全國人民,也不!應該是全世界的每個人都不要再使用一次性筷子了,只有這樣,才能保護好我們的森林資源,使我們共有的地球環境更加美好,讓地球上的每一個人呼吸到干凈、清新的空氣

Ⅷ 關於數學的小知識

1,零

在很早的時候,以為「1」是「數字字元表」的開始,並且它進一步引出了2,3,4,5等其他數字。這些數字的作用是,對那些真實存在的物體,如蘋果、香蕉、梨等進行計數。直到後來,才學會,當盒子里邊已經沒有蘋果時,如何計數里邊的蘋果數。



2,數字系統

數字系統是一種處理「多少」的方法。不同的文化在不同的時代採用了各種不同的方法,從基本的「1,2,3,很多」延伸到今天所使用的高度復雜的十進製表示方法。

3,π

π是數學中最著名的數。忘記自然界中的所有其他常數也不會忘記它,π總是出現在名單中的第一個位置。如果數字也有奧斯卡獎,那麼π肯定每年都會得獎。

π或者pi,是圓周的周長和它的直徑的比值。它的值,即這兩個長度之間的比值,不取決於圓周的大小。無論圓周是大是小,π的值都是恆定不變的。π產生於圓周,但是在數學中它卻無處不在,甚至涉及那些和圓周毫不相關的地方。

4,代數

代數給了一種嶄新的解決間題的方式,一種「迴旋」的演年方法。這種「迴旋」是「反向思維」的。讓我們考慮一下這個問題,當給數字25加上17時,結果將是42。這是正向思維。這些數,需要做的只是把它們加起來。

但是,假如已經知道了答案42,並提出一個不同的問題,即現在想要知道的是什麼數和25相加得42。這里便需要用到反向思維。想要知道未知數x的值,它滿足等式25+x=42,然後,只需將42減去25便可知道答案。

5,函數

萊昂哈德·歐拉是瑞士數學家和物理學家。歐拉是第一個使用「函數」一詞來描述包含各種參數的表達式的人,例如:y = F(x),他是把微積分應用於物理學的先驅者之一。

Ⅸ 小學數學知識點有哪些

數學作為一門具有很強邏輯性和連續性的學科,是每個小學生都應該掌握的基礎知識.小學數學重點是基礎知識的掌握基和學習,學習數學的標准就是能夠對該學籍范圍內的題目進行正確的解答.考察公式概念是小學數學重點要掌握的知識,下面這幾個學習方法帶你學好數學.

(同學們開講)

學習小學數學重點就是注重學習的方法,但是也需要學生有堅持不懈的精神.勤學多問不恥下問是學習的良好態度,他們會把你帶到一個更高的層次,掌握好學習方法,你會對每一天的新知識充滿興趣.

Ⅹ 小學數學知識

你好,這個問題我來回答:
以2019年小學數學知識大綱來看,主要的知識點和公式有以下這些:
小學數學公式大全
第一部分: 概念。
1,加法交換律:兩數相加交換加數的位置,和不變。
2,加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。
3,乘法交換律:兩數相乘,交換因數的位置,積不變。
4,乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5,乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。
如:(2+4)×5=2×5+4×5
6,除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 0除以任何不是0的數都得0。
簡便乘法:被乘數,乘數末尾有0的乘法,可以先把0前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
7,什麼叫等式 等號左邊的數值與等號右邊的數值相等的式子叫做等式。
等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
8,什麼叫方程式 答:含有未知數的等式叫方程式。
9, 什麼叫一元一次方程式 答:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。
學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
10,分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11,分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
12,分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。
異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
13,分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14,分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15,分數除以整數(0除外),等於分數乘以這個整數的倒數。
16,真分數:分子比分母小的分數叫做真分數。
17,假分數:分子比分母大或分子和分母相等的分數叫做假分數。假分數大於或等於1。
18,帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
19,分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
20,一個數除以分數,等於這個數乘以分數的倒數。
21,甲數除以乙數(0除外),等於甲數乘以乙數的倒數。
分數的加,減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數的乘法則:用分子的積做分子,用分母的積做分母。
22,什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3
比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。
23,什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18
24,比例的基本性質:在比例里,兩外項之積等於兩內項之積。
25,解比例:求比例中的未知項,叫做解比例。如3:χ=9:18
26,正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k( k一定)或kx=y
27,反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。 如:x×y = k( k一定)或k / x = y
28,百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。
29,把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。
30,把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
31,把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。
32,把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。
33,要學會把小數化成分數和把分數化成小數的化發。
34,最大公約數:幾個數都能被同一個數一次性整除,這個數就叫做這幾個數的最大公約數。(或幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個, 叫做最大公約數。)
35,互質數: 公約數只有1的兩個數,叫做互質數。
36,最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。
37,通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)
38,約分:把一個分數化成同它相等,但分子,分母都比較小的分數,叫做約分。(約分用最大公約數)
39,最簡分數:分子,分母是互質數的分數,叫做最簡分數。
40,分數計算到最後,得數必須化成最簡分數。
41,個位上是0,2,4,6,8的數,都能被2整除,即能用2進行約分。個位上是0或者5的數,都能被5整除,即能用5進行約分。在約分時應注意利用。
43,偶數和奇數:能被2整除的數叫做偶數。不能被2整除的數叫做奇數。
44,質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。
45,合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。
46,利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)
47,利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。
48,自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。
49,循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。如3。 141414
50,不循環小數:一個小數,從小數部分起,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做不循環小數。如圓周率:3。 141592654
51,無限不循環小數:一個小數,從小數部分起到無限位數,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做無限不循環小數。如3。 141592654……
52,什麼叫代數 代數就是用字母代替數。
53,什麼叫代數式 用字母表示的式子叫做代數式。如:3x =ab+c
小學數學公式大全,第二部分:計算公式。
數量關系式:
1, 每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數
2, 1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數
3, 速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4, 單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5, 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率
6, 加數+加數=和 和-一個加數=另一個加數
7, 被減數-減數=差 被減數-差=減數 差+減數=被減數
8, 因數×因數=積 積÷一個因數=另一個因數
9, 被除數÷除數=商 被除數÷商=除數 商×除數=被除數
和差問題的公式
(和+差)÷2=大數(和-差)÷2=小數
和倍問題的公式
和÷(倍數-1)=小數小數×倍數=大數(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數小數×倍數=大數(或 小數+差=大數)
面積,體積換算
(1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米
(2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
(3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米
(4)1公頃=10000平方米 1畝=666。666平方米
(5)1升=1立方分米=1000毫升 1毫升=1立方厘米
重量換算:
1噸=1000 千克1千克=1000克1千克=1公斤
人民幣單位換算
1元=10角1角=10分1元=100分
時間單位換算:
1世紀=100年 1年=12月大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月平年2月28天, 閏年2月29天
平年全年365天, 閏年全年366天
1日=24小時 1時=60分1分=60秒 1時=3600秒
小學數學公式大全,第三部分:幾何體。
1、正方形
正方形的周長=邊長×4 公式:C=4a
正方形的面積=邊長×邊長 公式:S=a×a
正方體的體積=邊長×邊長×邊長 公式:V=a×a×a
2、長方形
長方形的周長=(長+寬)×2 公式:C=(a+b)×2
長方形的面積=長×寬 公式:S=a×b
長方體的體積=長×寬×高 公式:V=a×b×h
3、三角形三角形的面積=底×高÷2。 公式:S= a×h÷2
4、平行四邊形平行四邊形的面積=底×高 公式:S= a×h
5、梯形梯形的面積=(上底+下底)×高÷2 公式:S=(a+b)h÷2
6、圓直徑=半徑×2 公式:d=2r半徑=直徑÷2 公式:r= d÷2
圓的周長=圓周率×直徑 公式:c=πd =2πr圓的面積=半徑×半徑×π 公式:S=πrr
7、圓柱
圓柱的側面積=底面的周長×高。 公式:S=ch=πdh=2πrh
圓柱的表面積=底面的周長×高+兩頭的圓的面積。 公式:S=ch+2s=ch+2πr2
圓柱的總體積=底面積×高。 公式:V=Sh
8、圓錐
圓錐的總體積=底面積×高×1/3 公式:V=1/3Sh
三角形內角和=180度。
平行線:同一平面內不相交的兩條直線叫做平行線
垂直:兩條直線相交成直角,像這樣的兩條直線,
我們就說這兩條直線互相垂直,其中一條直線叫做另一條直線的垂線,這兩條直線的交點叫做垂足。
希望能夠幫助到您。