❶ 小學數學知識點
一、教學目標
1、知識目標與技能:
①通過學習,學生能應用百分數解決實際問題。理解稅率、利率、折扣的含義。
②學生在經歷觀察、操作等活動的過程中認識圓柱和圓錐的特徵,能正確地判斷圓柱和圓錐,理解、掌握圓柱的表面積、圓柱和圓錐體積的計算方法,會正確地進行計算。
③學生結合實例認識扇形統計圖,理解眾數和平均數。
④初步掌握用方向和距離確定物體位置的方法。
⑤學生在解決實際問題的的過程中,學會用轉化的策略尋求解決問題的思路,並能根據具體的問題確定合理的解題方法,從而有效地觶決問題。
⑥學生理解比例的意義和基本性質,會解比例;認識比例尺,會看比例尺,會進行比例尺的有關計算;理解正比例和反比例的意義,能夠判斷兩種量是否成正比例或反比例,理解用比例關系解應用題的方法,學會用比例知識解答比較容易的應用題。
⑦學生通過系統的復習,鞏固和加深理解小學階段所學的數學知識,更好地培養比較合理的、靈活的計算能力,發展思維能力和空間觀念,並提高綜合運用所學數學知識解決簡單的實際問題的能力。
2、過程與方法:
本學期教學內容要緊密聯系學生生活環境,從學生的經驗和已有知識出發,創設有助於學生自主學習、合作交流,使學生通過觀察、操作、歸納、交流、反思活動,獲得基本的數學知識、技能,進一步發展思維能力,讓學生在情境體驗中,理解數學,增強空間觀念,發展形象思維,重視學生應用數學的意識和能力。能應用「轉換」的策略解決一些簡單的實際問題,進一步增強解決問題的策略意識和反思意識,體會解決問題策略的多樣性,培養根據實際問題的特點選擇相應策略的能力。
3、情感態度與價值觀:
①能積極參與各項數學活動,感受自己在數學知識和方法等方面的收獲與進步,增強對數學的好奇心與求知慾,進一步樹立學好數學的信心。
②在探索和理解百分數的計算方法,比例的基本性質,圓柱和圓錐的體積公式等活動中,進一步感受數學思考的嚴謹和數學結論的確定性,獲得一些成功的體驗,鍛煉克服困難的意志。
③通過閱讀「你知道嗎」以及參與「實踐與綜合應用」等活動,進一步了解有關數學知識的背景,體會數學對人類歷史發展的作用,培養民族自豪感,增強創新意識,鍛煉實踐能力。
4、質量目標:
各單元測試平均分達83以上,期末質量驗收平均分達85以上,優秀率、及格率分別達40%及95%以上。
二、教材分析
1、本學期教材的知識結構體系分析和技能訓練要求:
這冊教材包括下面地些內容:百分數的應用、圓柱和圓錐、比例、確定位置、正反比例、解決問題的策略、統計以及小學六年來所學數學內容的總復習。 本冊教材的這些內容是在前幾冊的基礎上按照完成小學數學的全部教學任務安排的,著重使學生認識一些常見的立體圖形,掌握它們的體積等計算方法,進一步發展空間觀念;進一步形成統計的觀念,掌握用扇形統計圖表示數據整理結果的方法,提高依據統計數據的分析、預測、判斷能力;理解比例、正比例、反比例的概念,加深認識一些常見的數量關系,會用比例知識解答比較容易的應用題。然後把小學數學的主要內容加以系統的整理和復習,鞏固所學的數學知識,使學生能夠綜合運用所學的數學知識解決比較簡單的實際問題;結合新的教學內容與系統的整理和復習,進一步發展思維能力,培養思維品質,進行思想品德教育。
2、教學重點:
本冊教材中的圓柱和圓錐、比例都是小學數學的重要內容。首先,認識圓柱和圓錐的特徵,掌握圓柱和圓錐的一些計算,既可以為進一步學習其他形體的表面積和體積及其計算打好基礎,進一步發展空間觀念,也可以增強解決問題的策略和方法,逐步增強學生收集、處理信息的意識和能力。最後學習好比例的知識,不僅可以增強學生用數學方法處理數學問題的能力,而且也使學生獲得初步的函數觀念,為進一步學習相關知識作初步的准備。因此,讓學生認識這些內容的概念,學會應用這些概念、方法和計算解決一些實際問題,是教學的重點。
❷ 初中一年級數學上冊知識點有哪些
你確定你要?
好吧,給你
初一數學概念
實數:
—有理數與無理數統稱為實數。
有理數:
整數和分數統稱為有理數。
無理數:
無理數是指無限不循環小數。
自然數:
表示物體的個數0、1、2、3、4~(0包括在內)都稱為自然數。
數軸:
規定了圓點、正方向和單位長度的直線叫做數軸。
相反數:
符號不同的兩個數互為相反數。
倒數:
乘積是1的兩個數互為倒數。
絕對值:
數軸上表示數a的點與圓點的距離稱為a的絕對值。一個正數的絕對值是本身,一個負數的絕對值是它的相反數,0的絕對值是0。
數學定理公式
有理數的運演算法則
⑴加法法則:同號兩數相加,取相同的符號,並把絕對值相加;異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值,互為相反數的兩個數相加得0。
⑵減法法則:減去一個數,等於加上這個數的相反數。
⑶乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘;任何數與0相乘都得0。
⑷除法法則:除以一個數等於乘上這個數的倒數;兩數相除,同號得正,異號得負,並把絕對值相除;0除以任何一個不等於0的數,都得0。
角的平分線:從角的一個頂點引出一條射線,能把這個角平均分成兩份,這條射線叫做這個角的角平分線。
數學第一章相交線
一、鄰補角:兩條直線相交所成的四個角中,有公共頂點,並且有一條公共邊,這樣的角叫做鄰補角。鄰補角是一種特殊位置關系和數量關系的角,即鄰補角一定是補角,但補角不一定是鄰補角。
二、對頂角:是兩條直線相交形成的。兩個角的兩邊互為反向延長線,因此對頂角也可以說成「把一個角的兩邊反向延長而形成的兩個角叫做對頂角」。
對頂角的性質:對頂角相等。
三、垂直
1、垂直:兩條直線所成的四個角中,有一個是直角時,就說這兩條直線互相垂直。其中一條叫做另一條的垂線,它們的交點叫做垂足。記做a⊥b
垂直是相交的一種特殊情形。
2、垂線的性質:
①過一點有且只有一條直線與已知直線垂直;
②連接直線外一點與直線上各點的所有線段中,垂線段最短。
直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。
3、畫法:①一靠(已知直線)②二過(定點)③三畫(垂線)
4、空間的垂直關系
四、平行線
1、 平行線:在同一平面內,不相交的兩條直線叫做平行線。記做a‖b
2、 「三線八角」:兩條直線被第三條直線所截形成的
① 同位角:「同方同位」即在兩條直線的上方或下方,在第三條直線的同一側。
② 內錯角:「之間兩側」即在兩條直線之間,在第三條直線的兩側。
③ 同旁內角「之間同旁」即在兩條直線之間,在第三條直線的同旁。
3、 平行公理:經過直線外一點,有且只有一條直線與這條直線平行
平行公理的推論:如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。
4、 平行線的判定方法
① 兩條直線被第三條直線所截,如果同位角相等,那麼這兩條直線平行;
② 兩條直線被第三條直線所截,如果內錯角相等,那麼這兩條直線平行;
③ 兩條直線被第三條直線所截,如果同旁內角互補,那麼這兩條直線平行;
④ 平行於同一條直線的兩條直線平行;
⑤ 垂直於同一條直線的兩條直線平行。
5、 平行線的性質:
①兩條平行線被第三條直線所截,同位角相等;
②兩條平行線被第三條直線所截,內錯角相等;
③兩條平行線被第三條直線所截,同旁內角互補。
6、 兩條平行線的距離:同時垂直於兩條平行線並且夾在這兩條平行線間的線段的長度,叫做這兩條平行線的距離。
7、 命題:判斷一件事情的語句,叫做命題,由題設和結論兩部分組成。
五平移
1、平移:在平面內將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移。
說明:①、平移不改變圖形的形狀和大小,改變圖形的位置;②「將一個圖形沿某個方向移動一定的距離」意味著「圖形上的每一點都沿著同一方向移動了相同的距離 」這也是判斷一種運動是否為平移的關鍵。③圖形平移的方向,不一定是水平的
2、平移的性質:經過平移,對應線段、對應角分別相等,對應點所連的線段平行且相等。
其實這些網上都有的,不過還是祝你學有所成吧。
❸ 初中一年級數學知識點是什麼
初中一年級上期數學知識點:
第一章有理數。
一、知識框架。
二、知識概念。
1.有理數:
(1)凡能寫成形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;p不是有理數。
(2)有理數的分類:①②。
2.數軸:數軸是規定了原點、正方向、單位長度的一條直線。
3.相反數:
(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0。
(2)相反數的和為0 ? a+b=0 ? a、b互為相反數。
4.絕對值:
(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離。
(2)絕對值可表示為:或;絕對值的問題經常分類討論。
5.有理數比大小:
(1)正數的絕對值越大,這個數越大。
(2)正數永遠比0大,負數永遠比0小。
(3)正數大於一切負數。
(4)兩個負數比大小,絕對值大的反而小。
(5)數軸上的兩個數,右邊的數總比左邊的數大。
(6)大數-小數>0,小數-大數<0。
6.互為倒數:乘積為1的兩個數互為倒數;注意:0沒有倒數;若a≠0,那麼的倒數是;若ab=1? a、b互為倒數;若ab=-1? a、b互為負倒數。
7.有理數加法法則:
(1)同號兩數相加,取相同的符號,並把絕對值相加。
(2)異號兩數相加,取絕對值較大的符號,並用較大的絕對值減去較小的絕對值。
(3)一個數與0相加,仍得這個數。
8.有理數加法的運算律:
(1)加法的交換律:a+b=b+a ;(2)加法的結合律:(a+b)+c=a+(b+c)。
9.有理數減法法則:減去一個數,等於加上這個數的相反數;即a-b=a+(-b)。
10有理數乘法法則:
(1)兩數相乘,同號為正,異號為負,並把絕對值相乘。
(2)任何數同零相乘都得零。
(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定。
11.有理數乘法的運算律:
(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc)。
(3)乘法的分配律:a(b+c)=ab+ac 。
12.有理數除法法則:除以一個數等於乘以這個數的倒數;注意:零不能做除數。
13.有理數乘方的法則:
(1)正數的任何次冪都是正數。
(2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時:(-a)n=-an或(a -b)n=-(b-a)n ,當n為正偶數時:(-a)n =an或(a-b)n=(b-a)n 。
14.乘方的定義:
(1)求相同因式積的運算,叫做乘方。
(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪。
15.科學記數法:把一個大於10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法。
16.近似數的精確位:一個近似數,四捨五入到那一位,就說這個近似數的精確到那一位。
17.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字。
18.混合運演算法則:先乘方,後乘除,最後加減。
本章內容要求學生正確認識有理數的概念,在實際生活和學習數軸的基礎上,理解正負數、相反數、絕對值的意義所在。重點利用有理數的運演算法則解決實際問題。
體驗數學發展的一個重要原因是生活實際的需要。激發學生學習數學的興趣,教師培養學生的觀察、歸納與概括的能力,使學生建立正確的數感和解決實際問題的能力。教師在講授本章內容時,應該多創設情境,充分體現學生學習的主體性地位。
第二章整式的加減。
一、知識框架。
二、知識概念。
1.單項式:在代數式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中不含字母的一類代數式叫單項式。
2.單項式的系數與次數:單項式中不為零的數字因數,叫單項式的數字系數,簡稱單項式的系數;系數不為零時,單項式中所有字母指數的和,叫單項式的次數。
3.多項式:幾個單項式的和叫多項式。
4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數項的次數叫多項式的次數。
通過本章學習,應使學生達到以下學習目標:
1.理解並掌握單項式、多項式、整式等概念,弄清它們之間的區別與聯系。
2.理解同類項概念,掌握合並同類項的方法,掌握去括弧時符號的變化規律,能正確地進行同類項的合並和去括弧。在准確判斷、正確合並同類項的基礎上,進行整式的加減運算。
3.理解整式中的字母表示數,整式的加減運算建立在數的運算基礎上;理解合並同類項、去括弧的依據是分配律;理解數的運算律和運算性質在整式的加減運算中仍然成立。
4.能夠分析實際問題中的數量關系,並用還有字母的式子表示出來。
在本章學習中,教師可以通過讓學生小組討論、合作學習等方式,經歷概念的形成過程,初步培養學生觀察、分析、抽象、概括等思維能力和應用意識。
第三章一元一次方程。
一、知識框架。
二、知識概念。
1.一元一次方程:只含有一個未知數,並且未知數的次數是1,並且含未知數項的系數不是零的整式方程是一元一次方程。
2.一元一次方程的標准形式:ax+b=0(x是未知數,a、b是已知數,且a≠0)。
3.一元一次方程解法的一般步驟:整理方程……去分母……去括弧……移項……合並同類項……系數化為1……(檢驗方程的解)。
4.列一元一次方程解應用題:
(1)讀題分析法:…………多用於「和,差,倍,分問題」。
仔細讀題,找出表示相等關系的關鍵字,例如:「大,小,多,少,是,共,合,為,完成,增加,減少,配套-」,利用這些關鍵字列出文字等式,並且據題意設出未知數,最後利用題目中的量與量的關系填入代數式,得到方程。
(2)畫圖分析法:…………多用於「行程問題」。
利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最後利用量與量之間的關系(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎。
11.列方程解應用題的常用公式:
(1)行程問題:距離=速度·時間。
(2)工程問題:工作量=工效·工時。
(3)比率問題:部分=全體·比率。
(4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度。
(5)商品價格問題:售價=定價·折·,利潤=售價-成本。
(6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab,C正方形=4a。
S正方形=a2,S環形=π(R2-r2),V長方體=abc,V正方體=a3,V圓柱=πR2h,V圓錐=πR2h。
❹ 小學數學一年級上冊學什麼知識
鏈接:https://pan..com/s/1JndelDI_xoFbeSzapDeYLQ
《巧虎一年級數學》這個建議給下半年要上一年級的孩子看的,同步一年級書本課程
❺ 小學一年級數學必背知識點
小學一年級數學必背知識點:
一、讀數、寫數
1、20以內的數
順數:從小到大的順序
倒數:從大到小的順序20191817······
單數:1、3、5、7、9······
雙數:2、4、6、8、10······
(註:0既不是單數,也不是雙數,0是偶數。在生活中說單雙數,在數學中說奇偶數。)
2、兩位數
(1)我們生活中經常遇到十個物體為一個整體的情況,實際上十個「1」就是一個「10」,一個「10」就是十個「1」。
如:A:11里有(1)個十和(1)個一;
11里有(11)個一。
12里有(1)個十和(2)個一;
12里有(12)個一13里有(1)個十和(3)個一;
13里有(13)個一14里有(1)個十和(4)個一;
14里有(14)個一15里有(1)個十和(5)個一;
15里有(15)個一······
19里有(1)個十和(9)個一;
或者說,19里有(19)個一20里有(2)個十;
20里有(20)個一B:看數字卡片(11~20),說出卡片上的數是由幾個十和幾個一組成的。
(2)在計數器上,從右邊起第一位是什麼位?(個位)第2位是什麼位?(十位)個位上的1顆珠子表示什麼?(表示1個一)十位上的1顆珠子表示什麼?(表示1個十)
(3)先讀11、12、13、14、15、16、17、18、19、20,再寫出來。
如:14,讀作:十四,寫作:14。個位上是4,表示4個一,十位上數字是1,表示1個十。
二、比較大小和第幾
1、給數字娃娃排隊
5、6、10、3、20、17,可以按從大到小的順序排列,也可以按從小到大的順序排列。
(注意做題時,寫一個數字,劃去一個,做到不重不漏。)
2、任意取20以內的兩個數,能夠用誰比誰大或誰比誰小說一句話。
如:16比15大,寫出來就是16>159比 13小,寫出來就是9<13
3、「比」字的用法
看「比」字的後面是誰,比幾大1就要在幾的基礎上加1,比幾小1就要在幾的基礎上減1。
如:比5小2的數是(3),比4多3的數是(7)。
三、幾和第幾
觀察圖,說說有幾個圖形?(16個圖形)從左數第幾位是什麼?從右數第幾位是什麼?把左邊三個圈起來;把右邊第2個圈起來。
(復習此類知識時,分清左右,同時確定方向;知道幾個和第幾個的區別。)
四、相鄰數
2的前面是1,2的後面是3,2再添上1就是3,3再去掉1就是2,與2相鄰的數是1和3。
3的前面是2,3的後面是4,3再添上1就是4,4再去掉1就是3,與3相鄰的數是2和4。······
20的前面是19,20的後面是21,······,與20相鄰的數是19和21。
五、事物的對比
1.兩個事物的對比
比較兩個事物的大小、多少、長短、高矮、輕重等,要以其中的一個事物作為參照,或者說以其中的一個事物作為標准,然後再比較,這樣就能說另一個事物比作為標準的那個事物大或者小、多或少等。
比長短:常用的方法注意要一端對齊,也可以採用數格比較,或對稱比較。
比高矮:注意在同一平面上去比較。
比多少:運用一一對應原則。
2.三個事物比較
可以先兩個兩個的比較。然後根據比較的結果,得出三個事物比較的結論。
如:A比B重,B比C重,那麼可以得到A比C重。A最重,C最輕。
A比B重,A比C重,只能得到A最重,還要比較B和C,才知道誰最輕。
六、加減法(一)
把兩個數合並在一起用加法。
加數+加數=和如:3+13=16中,3和13是加數,和是16。
從一個數裡面去掉一部分求剩下的是多少用減法。
被減數-減數=差如:19-6=13中,19是被減數,6是減數,差是13。
❻ 一年級數學小竅門知識
破十法:
加九減一,加八減二,加七減三,加六減四,加五見五
數字拆分法
9+6=9+(1+5)=(9+1)+5=15
一五6,二四6,三三6,四二6,五一6;6的組成沒遺漏。
一六7,二五7,三四7,四三7,五二7,六一7;7的組成記仔細。
一七8,二六8,三五8,四四8,五三8,六二8,七一8;8的組成記全它。
一八9,二七9,三六9,四五9,五四9,六三9,七二9,八一9;
9的組成全都有。
一九10,二八10,三七10,四六10,五五10,六四10,七三10,八二10,九一10;10的組成共九句。
湊十歌
一九一九好朋友,
二八二八手拉手,
三七三七真親密,
四六四六一起走,
五五湊成一雙手。
一加九,十隻小蝌蚪,
二加八,十隻花老鴨,
三加七,十隻老母雞,
四加六,十隻金絲猴,
五加五,十隻大老虎。
20以內的進位加法
看大數,分小數,湊成十,加剩數。
退位減法
退位減法要牢記,先從個位來減起;
哪位不夠前位退,本位加十莫忘記;
如果隔位退了1,0變十來最好記。
連續退位的減法
看到0,向前走,看看哪一位上有。
借走了往後走,0上有點看作9
例如1:加法8+5 看到8就想到2,因此5可以分成2和3,8和2組成10,10+3=13,所以8+5=13。
例如2:減法15-9
第一種:15可以分成10和5,10-9=1,再用1+5=6,所以15-9=6;
第二種:9可以分成5和4,15-5=10,10-4=6,所以15-9=6。
運用湊十法與破十法解答下列各題
7+8= 6+9= 9+4= 11-4= 6+7= 7+4=
12-9= 14-8= 2+9= 13-6= 14-5= 8+8=
4+9= 5+7= 14-6= 15-7= 8+4= 14-7=
5+8= 6+8= 7+4= 14-7= 12-8=
13-9= 12-8= 3+9= 4+9= 12-9=
5+6= 2+9= 12-9= 14-7= 13-8=
2+9= 4+7= 6+4= 3+7= 13-7=
( )+5=10 ( )+4=7 ( )-3=3 ( )-6=2 9-( )=2
3+( )=10 6-( )=1 ( )-7=3 ( )+2=5
0+( )=4
( )-0=6 10-( )=8 4+( )=9 7-( )=6 ( )-3=0
( )+7=8 5-( )=2 ( )-5=5 ( )+6=9 1+( )=8
7-( )=7 6+( )=10 ( )+2=8 ( )-3=4 3+( )=4
9-( )=0 ( )+6=7 4+( )=8 ( )-9=1 ( )-3=5
( )+1=4 ( )-7=4 ( )+8=10 9-( )=4 ( )-5=1
4+( )=10 ( )+5=5 ( )-2=5 10-( )=2 ( )-6=4
學習10以內數加減法的方法
一、加法:大數記心裡,小數往上數,如4+2= 把4記在心裡,往上數兩個數,5、6, 之後得出結果4+2=6
二、減法:大數記在心裡,小數往下數,如6-3= 把6記在心裡,往下數三個數,5、4、3, 之後得出結果6-3=3
家長需配合每日為寶貝出30道10以內加減法,提升孩子的算術能力,注意不要讓孩子數指頭,養成習慣不好改,培養心算能力。
20以內加減法竅門
20以內不進位加減法
1、11-20的數可以和孩子玩猜數游戲。用3種方式描述數:
① 個位是2,十位是1 。
② 1個十,5個一。
③ 比11大,比13小。
用這些方式描述數,讓孩子猜,或者反過來孩子描述大人猜,直到熟練。
2、用計數器撥數。
家長說數,孩子撥數。邊撥邊說數的組成。如12是由1個十和2個一組成的。
在一年級的數學教學中,一般的孩子在學前班時就學會了10以內加減法,進入小學後,20以內不進位不退位的加減法稍加練習也能熟練掌握。但是,孩子學習進位加法和退位減法就不是那麼輕鬆了,部分學生的計算速度大大下滑,計算的准確率也降低了,兩極分化初露端倪。有的學生由於計算速度跟不上,開始拖拉作業,成為數學學習困難者。
那麼,到底是什麼原因造成了孩子學習20以內進位加法以及退位減法的困難呢?小編認為,這和我們運用的計算進位加法和退位減法的演算法有關。演算法不外乎數數法和數字推理法,數數法就是通過數數來計算,包括藉助實物數數和單純數數兩種。數字推理法指的是包含湊十法、拆分法等的運用數字進行推算的方法。
然而,數字推理法對學生的思維要求高,需要的思維步驟也多,並不利於學生熟練掌握最終到達到脫口而出的地步。以運用最為廣泛的湊十法為例,求9加6等於幾,學生在解決問題之前就需要這幾個思考過程:一、判定該題是不是進位加法;二、如果是進位加法,怎樣才能湊成10。這樣確定方法後才能進行下面的運算:
9+6=9+(1+5)=(9+1)+5=10+5=15
從上面的運算中可以看出,這是一個運用加法結合律進行簡便計算的一個過程,而且屬於不能直接運用題中數據,需要拆分才能進行簡便運算的一類。所以,看似簡單的湊十法,其思維是不簡單的,包含著一系列邏輯推理過程,它的認知基礎與一年級學生所具有的知識結構和思維能力之間存在一定的距離,一定程度上造成了學生計算的困難。那麼,怎樣的方法才能更好地解決這一難題呢?
20以內的進位加法。
怎樣才能使學生能在較短時間內掌握20以內進位加法呢?其實只要將其轉化為學生已經掌握的10以內減法就行了,歸納下來口訣是:「加九減一,加八減二,加七減三,加六減四,加五減五。」怎樣用口訣,以「加九減一」為例,「加九減一」是指一個數與9相加,將這個數減去1作為它們和的個位。
例如:8+9=( )就拿 8減去1結果7,用7來作和的個位,即8+9=17, 5+9=( )就拿5減去1等於4,用4來作和的個位,即5+9=14。
「加八減二,加七減三,加六減四,加五減五」的方法同上
20以內退位減法。
20以內退位減法與20以內進位加法相反,就是把20以內退位減法轉化為10以內加法。口訣是:「減九加一,減八加二,減七加三,減六加四,減五加五。」如何用口訣,以「減九加一」為例,「減九加一」是指一個數減去9,將這個數的個位加上1所得的結果就是它們的差。
例如:17-9=( )就拿17的個位7加上1結果是8,即17-9=8,13-9=( )就拿13的個位3加上1結果是4,即13-9=4
例如:17-2=( )分清哪個是個位,哪個是十位,先看個位數能不能減,7-2如果夠減,就用十以為的減法,7記在心裡,然後倒數6,5,得5,然後十位的1不變,就得了15.
「減八加二,減七加三,減六加四,減五加五」與「減九加一」的方法一樣。
一年級學生還不能正確的進行抽象思維,採用以上方法,能使習慣依賴擺實物來計算的學生脫離實物也能快速准確的算出結果,避免了死記硬背,盲目多練,提高了運算速度,降低了出錯率,減輕了學生的學習負擔。
❼ 小學一年級數學一般都學什麼一年級數學
《小學一年級數學》網路網盤高清資源免費在線觀看
鏈接:
數學[英語:mathematics,源自古希臘語μθημα(máthēma);經常被縮寫為math或maths],是研究數量、結構、變化、空間以及信息等概念的一門學科。
❽ 一年級數學學什麼
一、一年級上冊所學內容:
1、認數:認識1-20以內的數。
2、算數:20以內的進位加法。
3、認識位置:前、後、左、右、中間。
4、認識鍾表。
5、認識圖形:長方體、正方體、圓柱。
二、一年級下冊所學內容:
1、算數:20以內的退位減法、100以內的加法和減法。
2、認識人民幣。
3、分類與整理。
4、找規律。
數學是人類對事物的抽象結構與模式進行嚴格描述的一種通用手段,可以應用於現實世界的任何問題,所有的數學對象本質上都是人為定義的。從這個意義上,數學屬於形式科學,而不是自然科學。不同的數學家和哲學家對數學的確切范圍和定義有一系列的看法。
在人類歷史發展和社會生活中,數學發揮著不可替代的作用,同時也是學習和研究現代科學技術必不可少的基本工具。