當前位置:首頁 » 基礎知識 » 高三數學知識點大全匯總
擴展閱讀
怎麼畫動漫版軍人 2024-11-07 16:50:24

高三數學知識點大全匯總

發布時間: 2022-07-18 02:08:06

1. 數學高考必考知識點總結有哪些

數學高考必考知識點總結有:

1、對於含參函數,奇函數沒有偶次方項,偶函數沒有奇次方項。

2、復合函數奇偶性:內偶則偶,內奇同外。

3、周期函數未必存在最小周期,如:常數函數。c.周期函數加周期函數未必是周期函數,如:y=sinxy=sin派x相加不是周期函數。

4、轉換法:當所給命題的充要條件不易判斷時,可對命題進行等價裝換,例如改用其逆否命題進行判斷。

5、當a為不同的數值時,冪函數的定義域的不同情況如下:如果a為任意實數,則函數的定義域為大於0的所有實數;如果a為負數,則x肯定不能為0。

2. 高中數學所有知識點歸納

高中數學基礎知識梳理(數學小飛俠)

鏈接:

提取碼:9bdp復制這段內容後打開網路網盤手機App,操作更方便哦

若資源有問題,歡迎追問~

3. 高中數學知識點總結(最全版)(強烈推薦)

鏈接:

提取碼: rrtg

高中數學基礎知識梳理(數學小飛俠)

4. 高中三年數學有多少個知識點

與高一高二不同之處在於,此時復習力學部分知識是為了更好的與高考考綱相結合,尤其水平中等或中等偏下的學生,此時需要進行查漏補缺,但也需要同時提升能力,填補知識、技能的空白。接下來是小編為大家整理的高三數學知識點梳理,希望大家喜歡!

高三數學知識點梳理一

數列是高中數學的重要內容,又是學習高等數學的基礎。高考對本章的考查比較全面,等差數列,等比數列的考查每年都不會遺漏。有關數列的試題經常是綜合題,經常把數列知識和指數函數、對數函數和不等式的知識綜合起來,試題也常把等差數列、等比數列,求極限和數學歸納法綜合在一起。

探索性問題是高考的熱點,常在數列解答題中出現。本章中還蘊含著豐富的數學思想,在主觀題中著重考查函數與方程、轉化與化歸、分類討論等重要思想,以及配方法、換元法、待定系數法等基本數學方法。

近幾年來,高考關於數列方面的命題主要有以下三個方面;

(1)數列本身的有關知識,其中有等差數列與等比數列的概念、性質、通項公式及求和公式。

(2)數列與其它知識的結合,其中有數列與函數、方程、不等式、三角、幾何的結合。

(3)數列的應用問題,其中主要是以增長率問題為主。試題的難度有三個層次,小題大都以基礎題為主,解答題大都以基礎題和中檔題為主,只有個別地方用數列與幾何的綜合與函數、不等式的綜合作為最後一題難度較大。

1.在掌握等差數列、等比數列的定義、性質、通項公式、前n項和公式的基礎上,系統掌握解等差數列與等比數列綜合題的規律,深化數學思想方法在解題實踐中的指導作用,靈活地運用數列知識和方法解決數學和實際生活中的有關問題;
2.在解決綜合題和探索性問題實踐中加深對基礎知識、基本技能和基本數學思想方法的認識,溝通各類知識的聯系,形成更完整的知識網路,提高分析問題和解決問題的能力,

進一步培養學生閱讀理解和創新能力,綜合運用數學思想方法分析問題與解決問題的能力

高三數學知識點梳理二

隨機抽樣

簡介

(抽簽法、隨機樣數表法)常常用於總體個數較少時,它的主要特徵是從總體中逐個抽取;

優點:操作簡便易行

缺點:總體過大不易實行

方法

(1)抽簽法

一般地,抽簽法就是把總體中的N個個體編號,把號碼寫在號簽上,將號簽放在一個容器中,攪拌均勻後,每次從中抽取一個號簽,連續抽取n次,就得到一個容量為n的樣本。

(抽簽法簡單易行,適用於總體中的個數不多時。當總體中的個體數較多時,將總體「攪拌均勻」就比較困難,用抽簽法產生的樣本代表性差的可能性很大)

(2)隨機數法

隨機抽樣中,另一個經常被採用的方法是隨機數法,即利用隨機數表、隨機數骰子或計算機產生的隨機數進行抽樣。

分層抽樣

簡介

分層抽樣主要特徵分層按比例抽樣,主要使用於總體中的個體有明顯差異。共同點:每個個體被抽到的概率都相等N/M。

定義

一般地,在抽樣時,將總體分成互不交叉的層,然後按照一定的比例,從各層獨立地抽取一定數量的個體,將各層取出的個體合在一起作為樣本,這種抽樣方法是一種分層抽樣。

整群抽樣

定義

什麼是整群抽樣

整群抽樣又稱聚類抽樣。是將總體中各單位歸並成若干個互不交叉、互不重復的集合,稱之為群;然後以群為抽樣單位抽取樣本的一種抽樣方式。

應用整群抽樣時,要求各群有較好的代表性,即群內各單位的差異要大,群間差異要小。

優缺點

整群抽樣的優點是實施方便、節省經費;

整群抽樣的缺點是往往由於不同群之間的差異較大,由此而引起的抽樣誤差往往大於簡單隨機抽樣。

實施步驟

先將總體分為i個群,然後從i個群鍾隨即抽取若干個群,對這些群內所有個體或單元均進行調查。抽樣過程可分為以下幾個步驟:

一、確定分群的標注

二、總體(N)分成若干個互不重疊的部分,每個部分為一群。

三、據各樣本量,確定應該抽取的群數。

四、採用簡單隨機抽樣或系統抽樣方法,從i群中抽取確定的群數。

例如,調查中學生患近視眼的情況,抽某一個班做統計;進行產品檢驗;每隔8h抽1h生產的全部產品進行檢驗等。

與分層抽樣的區別

整群抽樣與分層抽樣在形式上有相似之處,但實際上差別很大。

分層抽樣要求各層之間的差異很大,層內個體或單元差異小,而整群抽樣要求群與群之間的差異比較小,群內個體或單元差異大;

分層抽樣的樣本是從每個層內抽取若干單元或個體構成,而整群抽樣則是要麼整群抽取,要麼整群不被抽取。

系統抽樣

定義

當總體中的個體數較多時,採用簡單隨機抽樣顯得較為費事。這時,可將總體分成均衡的幾個部分,然後按照預先定出的規則,從每一部分抽取一個個體,得到所需要的樣本,這種抽樣叫做系統抽樣。

步驟

一般地,假設要從容量為N的總體中抽取容量為n的樣本,我們可以按下列步驟進行系統抽樣:

(1)先將總體的N個個體編號。有時可直接利用個體自身所帶的號碼,如學號、准考證號、門牌號等;

(2)確定分段間隔k,對編號進行分段。當N/n(n是樣本容量)是整數時,取k=N/n;

(3)在第一段用簡單隨機抽樣確定第一個個體編號l(l≤k);

(4)按照一定的規則抽取樣本。通常是將l加上間隔k得到第2個個體編號(l+k),再加k得到第3個個體編號(l+2k),依次進行下去,直到獲取整個樣本。

高三數學知識點梳理三

(一)導數第一定義

設函數y=f(x)在點x0的某個領域內有定義,當自變數x在x0處有增量△x(x0+△x也在該鄰域內)時,相應地函數取得增量△y=f(x0+△x)-f(x0);如果△y與△x之比當△x→0時極限存在,則稱函數y=f(x)在點x0處可導,並稱這個極限值為函數y=f(x)在點x0處的導數記為f'(x0),即導數第一定義

(二)導數第二定義

設函數y=f(x)在點x0的某個領域內有定義,當自變數x在x0處有變化△x(x-x0也在該鄰域內)時,相應地函數變化△y=f(x)-f(x0);如果△y與△x之比當△x→0時極限存在,則稱函數y=f(x)在點x0處可導,並稱這個極限值為函數y=f(x)在點x0處的導數記為f'(x0),即導數第二定義

(三)導函數與導數

如果函數y=f(x)在開區間I內每一點都可導,就稱函數f(x)在區間I內可導。這時函數y=f(x)對於區間I內的每一個確定的x值,都對應著一個確定的導數,這就構成一個新的函數,稱這個函數為原來函數y=f(x)的導函數,記作y',f'(x),dy/dx,df(x)/dx。導函數簡稱導數。

(四)單調性及其應用

1.利用導數研究多項式函數單調性的一般步驟

(1)求f¢(x)

(2)確定f¢(x)在(a,b)內符號(3)若f¢(x)>0在(a,b)上恆成立,則f(x)在(a,b)上是增函數;若f¢(x)<0在(a,b)上恆成立,則f(x)在(a,b)上是減函數

2.用導數求多項式函數單調區間的一般步驟

(1)求f¢(x)

(2)f¢(x)>0的解集與定義域的交集的對應區間為增區間;f¢(x)<0的解集與定義域的交集的對應區間為減區間

高三數學知識點梳理四

1.數列的定義

按一定次序排列的一列數叫做數列,數列中的每一個數都叫做數列的項.

(1)從數列定義可以看出,數列的數是按一定次序排列的,如果組成數列的數相同而排列次序不同,那麼它們就不是同一數列,例如數列1,2,3,4,5與數列5,4,3,2,1是不同的數列.

(2)在數列的定義中並沒有規定數列中的數必須不同,因此,在同一數列中可以出現多個相同的數字,如:-1的1次冪,2次冪,3次冪,4次冪,…構成數列:-1,1,-1,1,….

(4)數列的項與它的項數是不同的,數列的項是指這個數列中的某一個確定的數,是一個函數值,也就是相當於f(n),而項數是指這個數在數列中的位置序號,它是自變數的值,相當於f(n)中的n.

(5)次序對於數列來講是十分重要的,有幾個相同的數,由於它們的排列次序不同,構成的數列就不是一個相同的數列,顯然數列與數集有本質的區別.如:2,3,4,5,6這5個數按不同的次序排列時,就會得到不同的數列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個集合.

2.數列的分類

(1)根據數列的項數多少可以對數列進行分類,分為有窮數列和無窮數列.在寫數列時,對於有窮數列,要把末項寫出,例如數列1,3,5,7,9,…,2n-1表示有窮數列,如果把數列寫成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無窮數列.

(2)按照項與項之間的大小關系或數列的增減性可以分為以下幾類:遞增數列、遞減數列、擺動數列、常數列.

3.數列的通項公式

數列是按一定次序排列的一列數,其內涵的本質屬性是確定這一列數的規律,這個規律通常是用式子f(n)來表示的,

這兩個通項公式形式上雖然不同,但表示同一個數列,正像每個函數關系不都能用解析式表達出來一樣,也不是每個數列都能寫出它的通項公式;有的數列雖然有通項公式,但在形式上,又不一定是的,僅僅知道一個數列前面的有限項,無其他說明,數列是不能確定的,通項公式更非.如:數列1,2,3,4,…,

由公式寫出的後續項就不一樣了,因此,通項公式的歸納不僅要看它的前幾項,更要依據數列的構成規律,多觀察分析,真正找到數列的內在規律,由數列前幾項寫出其通項公式,沒有通用的方法可循.

再強調對於數列通項公式的理解注意以下幾點:

(1)數列的通項公式實際上是一個以正整數集N_它的有限子集{1,2,…,n}為定義域的函數的表達式.

(2)如果知道了數列的通項公式,那麼依次用1,2,3,…去替代公式中的n就可以求出這個數列的各項;同時,用數列的通項公式也可判斷某數是否是某數列中的一項,如果是的話,是第幾項.

(3)如所有的函數關系不一定都有解析式一樣,並不是所有的數列都有通項公式.

如2的不足近似值,精確到1,0.1,0.01,0.001,0.0001,…所構成的數列1,1.4,1.41,1.414,1.4142,…就沒有通項公式.

(4)有的數列的通項公式,形式上不一定是的,正如舉例中的:

(5)有些數列,只給出它的前幾項,並沒有給出它的構成規律,那麼僅由前面幾項歸納出的數列通項公式並不.

4.數列的圖象

對於數列4,5,6,7,8,9,10每一項的序號與這一項有下面的對應關系:

序號:1234567

項:45678910

這就是說,上面可以看成是一個序號集合到另一個數的集合的映射.因此,從映射、函數的觀點看,數列可以看作是一個定義域為正整集N_或它的有限子集{1,2,3,…,n})的函數,當自變數從小到大依次取值時,對應的一列函數值.這里的函數是一種特殊的函數,它的自變數只能取正整數.

由於數列的項是函數值,序號是自變數,數列的通項公式也就是相應函數和解析式.

數列是一種特殊的函數,數列是可以用圖象直觀地表示的.

數列用圖象來表示,可以以序號為橫坐標,相應的項為縱坐標,描點畫圖來表示一個數列,在畫圖時,為方便起見,在平面直角坐標系兩條坐標軸上取的單位長度可以不同,從數列的圖象表示可以直觀地看出數列的變化情況,但不精確.

把數列與函數比較,數列是特殊的函數,特殊在定義域是正整數集或由以1為首的有限連續正整數組成的集合,其圖象是無限個或有限個孤立的點.

5.遞推數列

一堆鋼管,共堆放了七層,自上而下各層的鋼管數構成一個數列:4,5,6,7,8,9,10.①

數列①還可以用如下方法給出:自上而下第一層的鋼管數是4,以下每一層的鋼管數都比上層的鋼管數多1。

與高一高二不同之處在於,此時復習力學部分知識是為了更好的與高考考綱相結合,尤其水平中等或中等偏下的學生,此時需要進行查漏補缺,但也需要同時提升能力,填補知識、技能的空白。接下來是小編為大家整理的高三數學知識點梳理,希望大家喜歡!

高三數學知識點梳理一

數列是高中數學的重要內容,又是學習高等數學的基礎。高考對本章的考查比較全面,等差數列,等比數列的考查每年都不會遺漏。有關數列的試題經常是綜合題,經常把數列知識和指數函數、對數函數和不等式的知識綜合起來,試題也常把等差數列、等比數列,求極限和數學歸納法綜合在一起。

探索性問題是高考的熱點,常在數列解答題中出現。本章中還蘊含著豐富的數學思想,在主觀題中著重考查函數與方程、轉化與化歸、分類討論等重要思想,以及配方法、換元法、待定系數法等基本數學方法。

近幾年來,高考關於數列方面的命題主要有以下三個方面;

(1)數列本身的有關知識,其中有等差數列與等比數列的概念、性質、通項公式及求和公式。

(2)數列與其它知識的結合,其中有數列與函數、方程、不等式、三角、幾何的結合。

(3)數列的應用問題,其中主要是以增長率問題為主。試題的難度有三個層次,小題大都以基礎題為主,解答題大都以基礎題和中檔題為主,只有個別地方用數列與幾何的綜合與函數、不等式的綜合作為最後一題難度較大。

1.在掌握等差數列、等比數列的定義、性質、通項公式、前n項和公式的基礎上,系統掌握解等差數列與等比數列綜合題的規律,深化數學思想方法在解題實踐中的指導作用,靈活地運用數列知識和方法解決數學和實際生活中的有關問題;
2.在解決綜合題和探索性問題實踐中加深對基礎知識、基本技能和基本數學思想方法的認識,溝通各類知識的聯系,形成更完整的知識網路,提高分析問題和解決問題的能力,

進一步培養學生閱讀理解和創新能力,綜合運用數學思想方法分析問題與解決問題的能力

高三數學知識點梳理二

隨機抽樣

簡介

(抽簽法、隨機樣數表法)常常用於總體個數較少時,它的主要特徵是從總體中逐個抽取;

優點:操作簡便易行

缺點:總體過大不易實行

方法

(1)抽簽法

一般地,抽簽法就是把總體中的N個個體編號,把號碼寫在號簽上,將號簽放在一個容器中,攪拌均勻後,每次從中抽取一個號簽,連續抽取n次,就得到一個容量為n的樣本。

(抽簽法簡單易行,適用於總體中的個數不多時。當總體中的個體數較多時,將總體「攪拌均勻」就比較困難,用抽簽法產生的樣本代表性差的可能性很大)

(2)隨機數法

隨機抽樣中,另一個經常被採用的方法是隨機數法,即利用隨機數表、隨機數骰子或計算機產生的隨機數進行抽樣。

分層抽樣

簡介

分層抽樣主要特徵分層按比例抽樣,主要使用於總體中的個體有明顯差異。共同點:每個個體被抽到的概率都相等N/M。

定義

一般地,在抽樣時,將總體分成互不交叉的層,然後按照一定的比例,從各層獨立地抽取一定數量的個體,將各層取出的個體合在一起作為樣本,這種抽樣方法是一種分層抽樣。

整群抽樣

定義

什麼是整群抽樣

整群抽樣又稱聚類抽樣。是將總體中各單位歸並成若干個互不交叉、互不重復的集合,稱之為群;然後以群為抽樣單位抽取樣本的一種抽樣方式。

應用整群抽樣時,要求各群有較好的代表性,即群內各單位的差異要大,群間差異要小。

優缺點

整群抽樣的優點是實施方便、節省經費;

整群抽樣的缺點是往往由於不同群之間的差異較大,由此而引起的抽樣誤差往往大於簡單隨機抽樣。

實施步驟

先將總體分為i個群,然後從i個群鍾隨即抽取若干個群,對這些群內所有個體或單元均進行調查。抽樣過程可分為以下幾個步驟:

一、確定分群的標注

二、總體(N)分成若干個互不重疊的部分,每個部分為一群。

三、據各樣本量,確定應該抽取的群數。

四、採用簡單隨機抽樣或系統抽樣方法,從i群中抽取確定的群數。

例如,調查中學生患近視眼的情況,抽某一個班做統計;進行產品檢驗;每隔8h抽1h生產的全部產品進行檢驗等。

與分層抽樣的區別

整群抽樣與分層抽樣在形式上有相似之處,但實際上差別很大。

分層抽樣要求各層之間的差異很大,層內個體或單元差異小,而整群抽樣要求群與群之間的差異比較小,群內個體或單元差異大;

分層抽樣的樣本是從每個層內抽取若干單元或個體構成,而整群抽樣則是要麼整群抽取,要麼整群不被抽取。

系統抽樣

定義

當總體中的個體數較多時,採用簡單隨機抽樣顯得較為費事。這時,可將總體分成均衡的幾個部分,然後按照預先定出的規則,從每一部分抽取一個個體,得到所需要的樣本,這種抽樣叫做系統抽樣。

步驟

一般地,假設要從容量為N的總體中抽取容量為n的樣本,我們可以按下列步驟進行系統抽樣:

(1)先將總體的N個個體編號。有時可直接利用個體自身所帶的號碼,如學號、准考證號、門牌號等;

(2)確定分段間隔k,對編號進行分段。當N/n(n是樣本容量)是整數時,取k=N/n;

(3)在第一段用簡單隨機抽樣確定第一個個體編號l(l≤k);

(4)按照一定的規則抽取樣本。通常是將l加上間隔k得到第2個個體編號(l+k),再加k得到第3個個體編號(l+2k),依次進行下去,直到獲取整個樣本。

高三數學知識點梳理三

(一)導數第一定義

設函數y=f(x)在點x0的某個領域內有定義,當自變數x在x0處有增量△x(x0+△x也在該鄰域內)時,相應地函數取得增量△y=f(x0+△x)-f(x0);如果△y與△x之比當△x→0時極限存在,則稱函數y=f(x)在點x0處可導,並稱這個極限值為函數y=f(x)在點x0處的導數記為f'(x0),即導數第一定義

(二)導數第二定義

設函數y=f(x)在點x0的某個領域內有定義,當自變數x在x0處有變化△x(x-x0也在該鄰域內)時,相應地函數變化△y=f(x)-f(x0);如果△y與△x之比當△x→0時極限存在,則稱函數y=f(x)在點x0處可導,並稱這個極限值為函數y=f(x)在點x0處的導數記為f'(x0),即導數第二定義

(三)導函數與導數

如果函數y=f(x)在開區間I內每一點都可導,就稱函數f(x)在區間I內可導。這時函數y=f(x)對於區間I內的每一個確定的x值,都對應著一個確定的導數,這就構成一個新的函數,稱這個函數為原來函數y=f(x)的導函數,記作y',f'(x),dy/dx,df(x)/dx。導函數簡稱導數。

(四)單調性及其應用

1.利用導數研究多項式函數單調性的一般步驟

(1)求f¢(x)

(2)確定f¢(x)在(a,b)內符號(3)若f¢(x)>0在(a,b)上恆成立,則f(x)在(a,b)上是增函數;若f¢(x)<0在(a,b)上恆成立,則f(x)在(a,b)上是減函數

2.用導數求多項式函數單調區間的一般步驟

(1)求f¢(x)

(2)f¢(x)>0的解集與定義域的交集的對應區間為增區間;f¢(x)<0的解集與定義域的交集的對應區間為減區間

高三數學知識點梳理四

1.數列的定義

按一定次序排列的一列數叫做數列,數列中的每一個數都叫做數列的項.

(1)從數列定義可以看出,數列的數是按一定次序排列的,如果組成數列的數相同而排列次序不同,那麼它們就不是同一數列,例如數列1,2,3,4,5與數列5,4,3,2,1是不同的數列.

(2)在數列的定義中並沒有規定數列中的數必須不同,因此,在同一數列中可以出現多個相同的數字,如:-1的1次冪,2次冪,3次冪,4次冪,…構成數列:-1,1,-1,1,….

(4)數列的項與它的項數是不同的,數列的項是指這個數列中的某一個確定的數,是一個函數值,也就是相當於f(n),而項數是指這個數在數列中的位置序號,它是自變數的值,相當於f(n)中的n.

(5)次序對於數列來講是十分重要的,有幾個相同的數,由於它們的排列次序不同,構成的數列就不是一個相同的數列,顯然數列與數集有本質的區別.如:2,3,4,5,6這5個數按不同的次序排列時,就會得到不同的數列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個集合.

2.數列的分類

(1)根據數列的項數多少可以對數列進行分類,分為有窮數列和無窮數列.在寫數列時,對於有窮數列,要把末項寫出,例如數列1,3,5,7,9,…,2n-1表示有窮數列,如果把數列寫成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無窮數列.

(2)按照項與項之間的大小關系或數列的增減性可以分為以下幾類:遞增數列、遞減數列、擺動數列、常數列.

3.數列的通項公式

數列是按一定次序排列的一列數,其內涵的本質屬性是確定這一列數的規律,這個規律通常是用式子f(n)來表示的,

這兩個通項公式形式上雖然不同,但表示同一個數列,正像每個函數關系不都能用解析式表達出來一樣,也不是每個數列都能寫出它的通項公式;有的數列雖然有通項公式,但在形式上,又不一定是的,僅僅知道一個數列前面的有限項,無其他說明,數列是不能確定的,通項公式更非.如:數列1,2,3,4,…,

由公式寫出的後續項就不一樣了,因此,通項公式的歸納不僅要看它的前幾項,更要依據數列的構成規律,多觀察分析,真正找到數列的內在規律,由數列前幾項寫出其通項公式,沒有通用的方法可循.

再強調對於數列通項公式的理解注意以下幾點:

(1)數列的通項公式實際上是一個以正整數集N_它的有限子集{1,2,…,n}為定義域的函數的表達式.

(2)如果知道了數列的通項公式,那麼依次用1,2,3,…去替代公式中的n就可以求出這個數列的各項;同時,用數列的通項公式也可判斷某數是否是某數列中的一項,如果是的話,是第幾項.

(3)如所有的函數關系不一定都有解析式一樣,並不是所有的數列都有通項公式.

如2的不足近似值,精確到1,0.1,0.01,0.001,0.0001,…所構成的數列1,1.4,1.41,1.414,1.4142,…就沒有通項公式.

(4)有的數列的通項公式,形式上不一定是的,正如舉例中的:

(5)有些數列,只給出它的前幾項,並沒有給出它的構成規律,那麼僅由前面幾項歸納出的數列通項公式並不.

4.數列的圖象

對於數列4,5,6,7,8,9,10每一項的序號與這一項有下面的對應關系:

序號:1234567

項:45678910

這就是說,上面可以看成是一個序號集合到另一個數的集合的映射.因此,從映射、函數的觀點看,數列可以看作是一個定義域為正整集N_或它的有限子集{1,2,3,…,n})的函數,當自變數從小到大依次取值時,對應的一列函數值.這里的函數是一種特殊的函數,它的自變數只能取正整數.

由於數列的項是函數值,序號是自變數,數列的通項公式也就是相應函數和解析式.

數列是一種特殊的函數,數列是可以用圖象直觀地表示的.

數列用圖象來表示,可以以序號為橫坐標,相應的項為縱坐標,描點畫圖來表示一個數列,在畫圖時,為方便起見,在平面直角坐標系兩條坐標軸上取的單位長度可以不同,從數列的圖象表示可以直觀地看出數列的變化情況,但不精確.

把數列與函數比較,數列是特殊的函數,特殊在定義域是正整數集或由以1為首的有限連續正整數組成的集合,其圖象是無限個或有限個孤立的點.

5.遞推數列

一堆鋼管,共堆放了七層,自上而下各層的鋼管數構成一個數列:4,5,6,7,8,9,10.①

數列①還可以用如下方法給出:自上而下第一層的鋼管數是4,以下每一層的鋼管數都比上層的鋼管數多1。

與高一高二不同之處在於,此時復習力學部

5. 高考數學知識點有哪些

高考數學知識點主要有集合與邏輯,函數,導數,三角函數,平面向量,數列,不等式,立體幾何,解析幾何,圓錐曲線,等

6. 高中數學知識點有哪些

01
高中數學是全國高中生學習的一門學科。包括《集合與函數》《三角函數》《不等式》《數列》《立體幾何》《平面解析幾何》等部分, 高中數學主要分為代數和幾何兩大部分。代數主要是一次函數,二次函數,反比例函數和三角函數。幾何又分為平面解析幾何和立體幾何兩大部分。

平面解析幾何初步:
(1)直線與方程
1在平面直角坐標系中,結合具體圖形,探索確定直線位置的幾何要素。
2理解直線的傾斜角和斜率的概念,經歷用代數方法刻畫直線斜率的過程,掌握過兩點的直線斜率的計算公式。
3能根據斜率判定兩條直線平行或垂直。
4根據確定直線位置的幾何要素,探索並掌握直線方程的幾種形式(點斜式、兩點式及一般式),體會斜截式與一次函數的關系。
5能用解方程組的方法求兩直線的交點坐標。
6探索並掌握兩點間的距離公式、點到直線的距離公式,會求兩條平行直線間的距離。
(2)圓與方程
1回顧確定圓的幾何要素,在平面直角坐標系中,探索並掌握圓的標准方程與一般方程。
2能根據給定直線、圓的方程,判斷直線與圓、圓與圓的位置關系。
3能用直線和圓的方程解決一些簡單的問題。
(3)在平面解析幾何初步的學習過程中,體會用代數方法處理幾何問題的思想。
(4)空間直角坐標系
1通過具體情境,感受建立空間直角坐標系的必要性,了解空間直角坐標系,會用空間直角坐標系刻畫點的位置。
2通過表示特殊長方體(所有棱分別與坐標軸平行)頂點的坐標,探索並得出空間兩點間的距離公式。

7. 高三數學知識點歸納是什麼

1、命題的「否定」與命題的「否命題」是兩個不同的概念,命題p的否定是否定命題所作的判斷,而「否命題」是對「若p,則q」形式的命題而言,既要否定條件也要否定結論。

2、集合中的元素具有確定性、無序性、互異性,集合元素的三性中互異性對解題的影響最大,特別是帶有字母參數的集合,實際上就隱含著對字母參數的一些要求。

3、判斷函數的奇偶性,首先要考慮函數的定義域,一個函數具備奇偶性的必要條件是這個函數的定義域關於原點對稱,如果不具備這個條件,函數一定是非奇非偶函數。

4、如果函數y=f(x)在區間[a,b]上的圖像是一條連續的曲線,並且有f(a)f(b)<0,那麼,函數y=f(x)在區間(a,b)內有零點,但f(a)f(b)>0時,不能否定函數y=f(x)在(a,b)內有零點。函數的零點有「變號零點」和「不變號零點」,對於「不變號零點」函數的零點定理是「無能為力」的,在解決函數的零點問題時要注意這個問題。

5、在研究函數問題時要時時刻刻想到「函數的圖像」,學會從函數圖像上去分析問題、尋找解決問題的方法。對於函數的幾個不同的單調遞增(減)區間,切忌使用並集,只要指明這幾個區間是該函數的單調遞增(減)區間即可。

8. 高中數學知識點總結

《高中數學基礎知識梳理(數學小飛俠)》網路網盤免費下載

鏈接:

提取碼: i8i2

資源目錄

01.集合例題講解.mp4

01.集合進階.mp4

02函數的值域.mp4

03函數的定義域與解析式.mp4

04函數的單調性.mp4

04函數的奇偶性.mp4

05指數運算與指數函數.mp4

07對數運算與對數函數.mp4

08冪函數突破.mp4

09函數零點專題.mp4

10含參二次函數與不等式專題.mp4

11二次函數根的分布專題.mp4

12空間幾何體.mp4

13點線面位置關系進階.mp4

14平行關系突破.mp4

15垂直關系突破.mp4

16空間幾何關系綜合.mp4

17直線方程突破.mp4

18圓的方程突破.mp4

19演算法初步.mp4

20演算法語句與演算法案例.mp4

21數據的收集與頻率分布.mp4

22常用統計量與相關關系.mp4

23古典概型概率.mp4

24幾何概型概率.mp4

25任意角重難點.mp4

26三角函數定義與誘導公式.mp4

27三角函數圖像及性質.mp4

28平面向量幾何運算.mp4

29平面向量代數運算.mp4

30.三角恆等變換.mp4

31.三角函數計算專題.mp4

32.正弦定理與餘弦定理.mp4

33.等差數列突破.mp4

34.等比數列突破.mp4

35.數列通項公式專題 .mp4

36.數列求和公式專題 .mp4

37.二次不等式與分式不等式.mp4

38.線性規劃問題.mp4

39.基本不等式突破.mp4

40.邏輯用語專題.mp4

41.橢圓方程及其幾何性質.mp4

42.雙曲線方程及其性質.mp4

43.拋物線方程及其性質.mp4

44.直線與圓錐曲線綜合.mp4

45.空間向量突破.mp4

46.導數的計算專題.mp4

47.導數的應用.mp4

48.導數的應用(二).mp4

49.定積分與微積分.mp4

50.復數專題.mp4

51.排列組合.mp4

52.二項式定理.mp4

53.隨機變數及其變數.mp4

54回歸分析與獨立性檢驗.mp4

資源目錄

01.集合例題講解.mp4

01.集合進階.mp4

02函數的值域.mp4

03函數的定義域與解析式.mp4

04函數的單調性.mp4

04函數的奇偶性.mp4

05指數運算與指數函數.mp4

07對數運算與對數函數.mp4

08冪函數突破.mp4

09函數零點專題.mp4

10含參二次函數與不等式專題.mp4

11二次函數根的分布專題.mp4

12空間幾何體.mp4

13點線面位置關系進階.mp4

14平行關系突破.mp4

15垂直關系突破.mp4

16空間幾何關系綜合.mp4

17直線方程突破.mp4

18圓的方程突破.mp4

19演算法初步.mp4

20演算法語句與演算法案例.mp4

21數據的收集與頻率分布.mp4

22常用統計量與相關關系.mp4

23古典概型概率.mp4

24幾何概型概率.mp4

25任意角重難點.mp4

26三角函數定義與誘導公式.mp4

27三角函數圖像及性質.mp4

28平面向量幾何運算.mp4

29平面向量代數運算.mp4

30.三角恆等變換.mp4

31.三角函數計算專題.mp4

32.正弦定理與餘弦定理.mp4

33.等差數列突破.mp4

34.等比數列突破.mp4

35.數列通項公式專題 .mp4

36.數列求和公式專題 .mp4

37.二次不等式與分式不等式.mp4

38.線性規劃問題.mp4

39.基本不等式突破.mp4

40.邏輯用語專題.mp4

41.橢圓方程及其幾何性質.mp4

42.雙曲線方程及其性質.mp4

43.拋物線方程及其性質.mp4

44.直線與圓錐曲線綜合.mp4

45.空間向量突破.mp4

46.導數的計算專題.mp4

47.導數的應用.mp4

48.導數的應用(二).mp4

49.定積分與微積分.mp4

50.復數專題.mp4

51.排列組合.mp4

52.二項式定理.mp4

53.隨機變數及其變數.mp4

54回歸分析與獨立性檢驗.mp4

9. 高中數學高考知識點

數學知識之間都有著千絲萬縷的聯系,僅僅想憑著對章節的理解就能得到高分的時代已經遠去了。所以考生在解答數學試題時要有正確的思路,才能避免錯失分數的機會。以下是高考數學解題五大思路,供大家學習參考。

高考數學解題思想一:函數與方程思想

函數思想是指運用運動變化的觀點,分析和研究數學中的數量關系,通過建立函數關系(或構造函數)運用函數的圖像和性質去分析問題、轉化問題和解決問題;方程思想,是從問題的數量關系入手,運用數學語言將問題轉化為方程(方程組)或不等式模型(方程、不等式等)去解決問題。利用轉化思想我們還可進行函數與方程間的相互轉化。

高考數學解題思想二:數形結合思想

中學數學研究的對象可分為兩大部分,一部分是數,一部分是形,但數與形是有聯系的,這個聯系稱之為數形結合或形數結合。它既是尋找問題解決切入點的「法寶」,又是優化解題途徑的「良方」,因此我們在解答數學題時,能畫圖的盡量畫出圖形,以利於正確地理解題意、快速地解決問題。

高考數學解題思想三:特殊與一般的思想

用這種思想解選擇題有時特別有效,這是因為一個命題在普遍意義上成立時,在其特殊情況下也必然成立,根據這一點,我們可以直接確定選擇題中的正確選項。不僅如此,用這種思想方法去探求主觀題的求解策略,也同樣精彩。

高考數學解題思想四:極限思想解題步驟

極限思想解決問題的一般步驟為:(1)對於所求的未知量,先設法構思一個與它有關的變數;(2)確認這變數通過無限過程的結果就是所求的未知量;(3)構造函數(數列)並利用極限計演算法則得出結果或利用圖形的極限位置直接計算結果。

高考數學解題思想五:分類討論思想

我們常常會遇到這樣一種情況,解到某一步之後,不能再以統一的方法、統一的式子繼續進行下去,這是因為被研究的對象包含了多種情況,這就需要對各種情況加以分類,並逐類求解,然後綜合歸納得解,這就是分類討論。引起分類討論的原因很多,數學概念本身具有多種情形,數學運演算法則、某些定理、公式的限制,圖形位置的不確定性,變化等均可能引起分類討論。在分類討論解題時,要做到標准統一,不重不漏。

詳細內容看文件,希望採納謝謝

10. 高三數學知識點歸納

高三數學知識點匯總歸納
在日復一日的學習中,大家都背過各種知識點吧?知識點是傳遞信息的基本單位,知識點對提高學習導航具有重要的作用。那麼,都有哪些知識點呢?以下是小編為大家整理的高三數學知識點匯總歸納,僅供參考,希望能夠幫助到大家。

高三數學知識點歸納 篇1
高三上冊數學知識點整理
1、函數零點的概念:對於函數,把使成立的實數叫做函數的零點。
2、函數零點的意義:函數的零點就是方程實數根,亦即函數的圖象與軸交點的橫坐標。即:
方程有實數根函數的圖象與軸有交點函數有零點.
3、函數零點的求法:
求函數的零點:
(1)(代數法)求方程的實數根;
(2)(幾何法)對於不能用求根公式的方程,可以將它與函數的圖象聯系起來,並利用函數的性質找出零點.
4、二次函數的零點:
二次函數.
1)△>0,方程有兩不等實根,二次函數的圖象與軸有兩個交點,二次函數有兩個零點.
2)△=0,方程有兩相等實根(二重根),二次函數的圖象與軸有一個交點,二次函數有一個二重零點或二階零點.
3)△
人教版高三數學知識點總結
1.定義:
用符號〉,=,〈號連接的式子叫不等式。
2.性質:
1不等式的兩邊都加上或減去同一個整式,不等號方向不變。
2不等式的兩邊都乘以或者除以一個正數,不等號方向不變。
3不等式的兩邊都乘以或除以同一個負數,不等號方向相反。
3.分類:
1一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的次數是1的不等式叫一元一次不等式。
2一元一次不等式組:
a.關於同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組。
b.一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。
4.考點:
1解一元一次不等式(組)
2根據具體問題中的數量關系列不等式(組)並解決簡單實際問題
3用數軸表示一元一次不等式(組)的解集
高三數學知識點歸納 篇2
1、圓柱體:
表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)
2、圓錐體:
表面積:πR2+πR[(h2+R2)的平方根]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,
3、正方體
a-邊長,S=6a2,V=a3
4、長方體
a-長,b-寬,c-高S=2(ab+ac+bc)V=abc
5、稜柱
S-底面積h-高V=Sh
6、棱錐
S-底面積h-高V=Sh/3
7、稜台
S1和S2-上、下底面積h-高V=h[S1+S2+(S1S2)^1/2]/3
8、擬柱體
S1-上底面積,S2-下底面積,S0-中截面積
h-高,V=h(S1+S2+4S0)/6
9、圓柱
r-底半徑,h-高,C―底面周長
S底―底面積,S側―側面積,S表―表面積C=2πr
S底=πr2,S側=Ch,S表=Ch+2S底,V=S底h=πr2h
10、空心圓柱
R-外圓半徑,r-內圓半徑h-高V=πh(R^2-r^2)
11、直圓錐
r-底半徑h-高V=πr^2h/3
12、圓台
r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/3
13、球
r-半徑d-直徑V=4/3πr^3=πd^3/6
14、球缺
h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3
高三數學知識點歸納 篇3
復數的概念:
形如a+bi(a,b∈R)的數叫復數,其中i叫做虛數單位。全體復數所成的集合叫做復數集,用字母C表示。
復數的表示:
復數通常用字母z表示,即z=a+bi(a,b∈R),這一表示形式叫做復數的代數形式,其中a叫復數的實部,b叫復數的虛部。
復數的幾何意義:
(1)復平面、實軸、虛軸:
點Z的橫坐標是a,縱坐標是b,復數z=a+bi(a、b∈R)可用點Z(a,b)表示,這個建立了直角坐標系來表示復數的平面叫做復平面,x軸叫做實軸,y軸叫做虛軸。顯然,實軸上的點都表示實數,除原點外,虛軸上的點都表示純虛數
(2)復數的幾何意義:復數集C和復平面內所有的點所成的集合是一一對應關系,即
這是因為,每一個復數有復平面內惟一的一個點和它對應;反過來,復平面內的每一個點,有惟一的一個復數和它對應。
這就是復數的一種幾何意義,也就是復數的另一種表示方法,即幾何表示方法。
復數的模:
復數z=a+bi(a、b∈R)在復平面上對應的點Z(a,b)到原點的距離叫復數的模,記為|Z|,即|Z|=
虛數單位i:
(1)它的平方等於-1,即i2=-1;
(2)實數可以與它進行四則運算,進行四則運算時,原有加、乘運算律仍然成立
(3)i與-1的關系:i就是-1的一個平方根,即方程x2=-1的一個根,方程x2=-1的另一個根是-i。
(4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。
復數模的性質:
復數與實數、虛數、純虛數及0的關系:
對於復數a+bi(a、b∈R),當且僅當b=0時,復數a+bi(a、b∈R)是實數a;當b≠0時,復數z=a+bi叫做虛數;當a=0且b≠0時,z=bi叫做純虛數;當且僅當a=b=0時,z就是實數0。
高三數學知識點歸納 篇4
1.不等式的定義
在客觀世界中,量與量之間的不等關系是普遍存在的,我們用數學符號連接兩個數或代數式以表示它們之間的不等關系,含有這些不等號的式子,叫做不等式.
2.比較兩個實數的大小
兩個實數的大小是用實數的運算性質來定義的,
有a-b>0?;a-b=0?;a-b
另外,若b>0,則有>1?;=1?;
概括為:作差法,作商法,中間量法等.
3.不等式的性質
(1)對稱性:a>b?;
(2)傳遞性:a>b,b>c?;
(3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;
(4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;
(5)可乘方:a>b>0?(n∈N,n≥2);
(6)可開方:a>b>0?(n∈N,n≥2).
復習指導
1.「一個技巧」作差法變形的技巧:作差法中變形是關鍵,常進行因式分解或配方.
2.「一種方法」待定系數法:求代數式的范圍時,先用已知的代數式表示目標式,再利用多項式相等的法則求出參數,最後利用不等式的性質求出目標式的范圍.
3.「兩條常用性質」
(1)倒數性質:1a>b,ab>0?<;2a
3a>b>0,0;40
(2)若a>b>0,m>0,則
1真分數的性質:<;>
(b-m>0);
高三數學知識點歸納 篇5
不等式的解集:
1能使不等式成立的未知數的值,叫做不等式的解。
2一個含有未知數的不等式的所有解,組成這個不等式的解集。
3求不等式解集的過程叫做解不等式。
不等式的判定:
1常見的不等號有「>」「<」「≤」「≥」及「≠」。分別讀作「大於,小於,小於等於,大於等於,不等於」,其中「≤」又叫作不大於,「≥」叫作不小於;
2在不等式「a>b」或「a
3不等號的開口所對的數較大,不等號的尖頭所對的數較小;
4在列不等式時,一定要注意不等式關系的關鍵字,如:正數、非負數、不大於、小於等等。
高三數學知識點歸納 篇6
等式的性質:
1不等式的性質可分為不等式基本性質和不等式運算性質兩部分。
不等式基本性質有:
(1)a>bb
(2)a>b,b>ca>c(傳遞性)
(3)a>ba+c>b+c(c∈R)
(4)c>0時,a>bac>bc
c
bac
運算性質有:
(1)a>b,c>da+c>b+d。
(2)a>b>0,c>d>0ac>bd。
(3)a>b>0an>bn(n∈N,n>1)。
(4)a>b>0>(n∈N,n>1)。
應注意,上述性質中,條件與結論的邏輯關系有兩種:「」和「」即推出關系和等價關系。一般地,證明不等式就是從條件出發施行一系列的推出變換。解不等式就是施行一系列的等價變換。因此,要正確理解和應用不等式性質。
2關於不等式的性質的考察,主要有以下三類問題:
(1)根據給定的不等式條件,利用不等式的性質,判斷不等式能否成立。
(2)利用不等式的性質及實數的性質,函數性質,判斷實數值的大小。
(3)利用不等式的性質,判斷不等式變換中條件與結論間的充分或必要關系。
高中數學集合復習知識點
任一A,B,記做AB
AB,BA,A=B
AB={|A|,且|B|}
AB={|A|,或|B|}
Card(AB)=card(A)+card(B)-card(AB)
(1)命題
原命題若p則q
逆命題若q則p
否命題若p則q
逆否命題若q,則p
(2)AB,A是B成立的充分條件
BA,A是B成立的必要條件
AB,A是B成立的充要條件
1.集合元素具有1確定性;2互異性;3無序性
2.集合表示方法1列舉法;2描述法;3韋恩圖;4數軸法
(3)集合的運算
1A∩(B∪C)=(A∩B)∪(A∩C)
2Cu(A∩B)=CuA∪CuB
Cu(A∪B)=CuA∩CuB
(4)集合的性質
n元集合的字集數:2n
真子集數:2n-1;
非空真子集數:2n-2
高中數學集合知識點歸納
1、集合的概念
集合是數學中最原始的不定義的概念,只能給出,描述性說明:某些制定的且不同的對象集合在一起就稱為一個集合。組成集合的對象叫元素,集合通常用大寫字母A、B、C、來表示。元素常用小寫字母a、b、c、來表示。
集合是一個確定的整體,因此對集合也可以這樣描述:具有某種屬性的對象的全體組成的一個集合。