當前位置:首頁 » 基礎知識 » 五年級下冊數學總復習知識
擴展閱讀
同學建立的群叫什麼名字 2024-11-07 19:20:07
豐富自己的知識大全 2024-11-07 19:13:41
怎麼也逃不掉歌詞 2024-11-07 19:11:41

五年級下冊數學總復習知識

發布時間: 2022-07-17 15:54:16

① 人教版五年級下學期數學復習重點

五年級下冊的重點在第四單元和第五單元,這兩單元的分數知識在期末考試中分值至少50分,分數的加減混合運算、分數加減法的簡便運算必考, 難點就是第三單元長方體和正方體,只要你把書上的公式記住就行了,千成記住長方體和正方體的定義、總棱長、表面積、體積公式。

② 五年級數學下冊每個單元的復習重點是什麼

五年級下冊數學知識要點:

第一單元:圖形的變換
1. 軸對稱圖形:一個圖形沿一條直線對折,兩側的圖形能夠完全重合,這個圖形就是軸對稱圖形。這條直線叫做它的對稱軸。
2. 軸對稱圖形的特徵:1、對稱點到對稱軸的距離相等;2、對應點連線與對稱軸互相垂直。
3. 旋轉:圖形或物體繞著一個點或一條軸運動的現象叫做旋轉。

第二單元:因數與倍數
1. 因數和倍數:在整數乘法里,如果a×b=c,那麼a和b是c的因數,c是a和b的倍數。
2. 為了方便,在研究因數和倍數的時候,我們所說的數指的是整數(一般不包括0)。但是0也是整數。
3. 一個數的最小因數是1,最大因數是它本身。一個數的因數的個數是有限的。
4. 一個數的最小倍數是它本身,沒有最大的倍數。 一個數的倍數的個數是無限的。
5. 個位上是0、2、4、6、8的數都是2的倍數。個位上是0、5的數都是5的倍數。一個數,每個數位上的數的和是3的倍數,這個數就是3的倍數。
6. 自然數中,是2的倍數的數叫做偶數(0也是偶數),不是2的倍數的數叫做奇數。
7. 最小的奇數是1,最小的偶數是0。最小的質數是2,最小的合數是4。
8.
四則運算中的奇偶規律:
奇數+奇數=偶數 奇數-奇數=偶數 奇數×奇數=奇數
偶數+偶數=偶數 偶數-偶數=偶數 偶數×偶數=偶數
奇數+偶數=奇數 奇數-偶數=奇數 奇數×偶數=偶數
偶數-奇數=奇數
9. 一個數,如果只有1和它本身兩個因數,這樣的數叫做質數(或素數);如果除了1和它本身還有別的因數,這樣的數叫做合數。
10. 1既不是質數,也不是合數。
11. 自然數按照因數的個數多少,可以分為1、質數、合數;按是否是2的倍數,可以分為奇數、偶數。
12. 100以內的質數表:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

第三單元:長方體和正方體
1. 正方體也叫立方體。
2. 長方體的特徵是:①長方體有6個面;②每個面都是長方形(特殊情況下有兩個相對的面是正方形);③相對的面完全相同;④有12條棱;⑤相對的棱長度相等;⑥有8個頂點。
3. 相交於一個頂點的三條棱的長度分別叫做長方體的長、寬、高。
4. 正方體可以看成是長、寬、高都相等的長方體。正方體是特殊的長方體。
5. 正方體的特徵是:①正方體有6個面;②每個面都是正方形;③所有的面都完全相同;④有12條棱;⑤所有的棱長度都相等;⑥有8個頂點。
6. 長方體的棱長總和=(長+寬+高)×4
7. 正方體的棱長總和=棱長×12
8. 長方體六個面的面積總和叫做長方體的表面積。
9. 上面或下面面積=長×寬;前面或後面面積=長×高;左面或右面面積=寬×高。
10. 長方體的表面積=(長×寬+長×高+寬×高)×2
11. 正方體的表面積=棱長2×6
12. 「有兩個相對的面是正方形」的長方體表面積=正方形面的面積×2+長方形面的面積×4
13. 長方體的側面積=底面周長×高
14. 物體所佔空間的大小,叫做物體的體積。
15. 常用的體積單位有立方厘米,立方分米和立方米,可以分別寫成cm3,dm3,和m3。
16. 棱長是1cm的正方體,體積是1cm3;棱長是1dm的正方體,體積是1dm3;棱長是1m的正方體,體積是1m3。
17. 長方體的體積=長×寬×高;用字母表示是V=abh
18. 正方體的體積=棱長3;用字母表示是V=a3
19. 長方體(或正方體)的體積=底面積×高=橫截面積×長
20. 在工程上,1立方米簡稱1方。
21. 1個長方體或正方體,如果所有的棱長都擴大n倍,那麼棱長總和也擴大n倍,表面積擴大n2倍,體積擴大n3倍。
22. 棱長總和相等的長方體或正方體,正方體的體積最大。
23. 1立方米=1000立方分米;1立方分米=1000立方厘米。
24. 每相鄰兩個長度單位間的進率是10;每相鄰兩個面積單位之間的進率是100;每相鄰兩個體積單位之間的進率是1000。
25. 容器所能容納物體的體積,通常叫做它們的容積。計量容積,一般就用體積單位。
26. 計量液體的體積,常用的容積單位是升和毫升,也可以寫成L和ml。
27. 1升相當於1立方分米,1毫升相當於1立方厘米,所以1升=1000毫升。
28. 長方體或正方體容器容積的計算方法,跟體積的計算方法相同,但要從容器裡面量長、寬、高。所以容器的容積比體積要小一些。
29. 浸沒在水中的物體的體積=現在水的體積-原來水的體積=容器的長×容器的寬×水面上升的高度
30. 怎樣測量一個不規則的物體的體積呢?先在量杯里裝上適量的水,記下水面對應的刻度,再把物體浸沒在水中,再記下新的水面對應刻度。兩次刻度的差,就是這個不規則物體的體積。

第四單元:分數的意義和性質
1. 一個物體或是幾個物體組成的一個整體都可以用自然數1來表示,我們通常把它叫做單位「1」。
2. 把單位「1」平均分成若干份,表示這樣的一份或幾份的數叫做分數。例如3/7表示把單位「1」平均分成7份,取其中的3份。
3. 5/8米按分數的意義,表示:把1米平均分成8份,取其中的5份。按分數與除法的關系,表示:把5米平均分成8份,取其中的1份。
4. 把單位「1」平均分成若干份,表示其中一份的數叫分數單位。
5. 分數和除法的關系是:分數的分子相當於除法中的被除數,分數的分數線相當於除法中的除號,分數的分母相當於除法中的除數,分數的分數值相當於除法中的商。
6. 把一個整體平均分成若干份,求每份是多少,用除法。總數÷份數=每份數。
7. 求一個數量是另一個數量的幾分之幾,用除法。一個數量÷另一個數量=幾分之幾(幾倍)。
8. 分子比分母小的分數叫真分數。真分數小於1。
9. 分子比分母大或分子和分母相等的分數叫做假分數。假分數大於1或等於1。
10. 帶分數包括整數部分和分數部分,分數部分應當是真分數。帶分數大於1。
11. 把假分數化成帶分數的方法是用分子除以分母,商是整數部分,余數是分子,分母不變。把帶分數化成假分數的方法是用整數部分乘分母的積加原來的分子作分子,分母不變。
12. 整數可以看成分母是1的假分數。例如5可以看成是5/1。
13. 分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。這叫做分數的基本性質。
14. 幾個數公有的因數叫做這幾個數的公因數,其中最大的公因數叫作它們的最大公因數。最小公因數一定是1。
15. 幾個數公有的倍數叫做這幾個數的公倍數,其中最小的公倍數叫作它們的最小公倍數。沒有最大的公倍數。
16. 求最大公因數或最小公倍數可以用列舉法,也可以用短除法分解質因數。
17. 公因數只有1的兩個數叫做互質數。分子和分母是互質數的分數叫做最簡分數。最簡分數不一定是真分數。
18. 除法計算的結果可以用分數表示,比較方便。如果計算結果可以約分的話,要化簡成最簡分數。
19. 如果兩個數是倍數關系,那麼它們的最大公因數是較小的數,最小公倍數是較大的數。
20. 如果兩個數是互質關系,那麼它們的最大公因數是1,最小公倍數是它們的積。
21. 數A×數B=它們的最大公因數×它們的最小公倍數。
22. 兩個數是互質數的幾種特殊情況有:1、1和任何數都是互質數;2、兩個相鄰的自然數一定是互質數;3、兩個相鄰的奇數一定是互質數;4、兩個不同的質數一定是互質數;5、一個質數和一個不是它倍數的合數一定是互質數。
23. 把一個分數化成和它相等,但分子和分母都比較小的分數,叫做約分。把幾個異分母分數分別化成和原來分數相等的同分母分數,叫做通分。
24. 把分數化成小數的方法是用分子除以分母;把小數化成分數的方法是先寫成分母是10、100……的分數,然後再進行約分。
25. 如果一個最簡分數的分母除了2和5以外,不含有其他的質因數,這個分數就能化成有限小數。
26. 兩個數的最大公因數等於兩個數公有的質因數的積;兩個數的最小公倍數等於兩個數公有的質因數×它們各自獨有的質因數。
27. 兩個數的公因數,都是這兩個數的最大公因數的因數;兩個數的公倍數,都是這兩個數的最小公倍數的倍數。

③ 五年級下冊數學人教版的知識概括

小學五年級數學上冊期末復習知識點歸納
第一單元小數乘法
1、小數乘整數(P2、3):意義——求幾個相同加數的和的簡便運算.
如:1.5×3表示1.5的3倍是多少或3個1.5的和的簡便運算.
計算方法:先把小數擴大成整數;按整數乘法的法則算出積;再看因數中一共有幾位小數,就從積的右邊起數出幾位點上小數點.
2、小數乘小數(P4、5):意義——就是求這個數的幾分之幾是多少.
如:1.5×0.8就是求1.5的十分之八是多少.
1.5×1.8就是求1.5的1.8倍是多少.
計算方法:先把小數擴大成整數;按整數乘法的法則算出積;再看因數中一共有幾位小數,就從積的右邊起數出幾位點上小數點.
注意:計算結果中,小數部分末尾的0要去掉,把小數化簡;小數部分位數不夠時,要用0佔位.
3、規律(1)(P9):一個數(0除外)乘大於1的數,積比原來的數大;
一個數(0除外)乘小於1的數,積比原來的數小.
4、求近似數的方法一般有三種:(P10)
⑴四捨五入法;⑵進一法;⑶去尾法
5、計算錢數,保留兩位小數,表示計算到分.保留一位小數,表示計算到角.
6、(P11)小數四則運算順序跟整數是一樣的.
7、運算定律和性質:
加法:加法交換律:a+b=b+a 加法結合律:(a+b)+c=a+(b+c)
減法:減法性質:a-b-c=a-(b+c) a-(b-c)=a-b+c
乘法:乘法交換律:a×b=b×a乘法結合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】
除法:除法性質:a÷b÷c=a÷(b×c)
第二單元小數除法
8、小數除法的意義:已知兩個因數的積與其中的一個因數,求另一個因數的運算.
如:0.6÷0.3表示已知兩個因數的積0.6與其中的一個因數0.3,求另一個因數的運算.
9、小數除以整數的計算方法(P16):小數除以整數,按整數除法的方法去除.,商的小數點要和被除數的小數點對齊.整數部分不夠除,商0,點上小數點.如果有餘數,要添0再除.
10、(P21)除數是小數的除法的計算方法:先將除數和被除數擴大相同的倍數,使除數變成整數,再按「除數是整數的小數除法」的法則進行計算.
注意:如果被除數的位數不夠,在被除數的末尾用0補足.
11、(P23)在實際應用中,小數除法所得的商也可以根據需要用「四捨五入」法保留一定的小數位數,求出商的近似數.
12、(P24、25)除法中的變化規律:①商不變性質:被除數和除數同時擴大或縮小相同的倍數(0除外),商不變.
②除數不變,被除數擴大,商隨著擴大.③被除數不變,除數縮小,商擴大.
13、(P28)循環小數:一個數的小數部分,從某一位起,一個數字或者幾個數字依次不斷重復出現,這樣的小數叫做循環小數. 循環節:一個循環小數的小數部分,依次不斷重復出現的數字.如6.3232……的循環節是32.
14、小數部分的位數是有限的小數,叫做有限小數.小數部分的位數是無限的小數,叫做無限小數.
第三單元觀察物體
15、從不同的角度觀察物體,看到的形狀可能是不同的;觀察長方體或正方體時,從固定位置最多能看到三個面.
第四單元簡易方程
16、(P45)在含有字母的式子里,字母中間的乘號可以記作「•」,也可以省略不寫.
加號、減號除號以及數與數之間的乘號不能省略.
17、a×a可以寫作a•a或a ,a 讀作a的平方. 2a表示a+a
18、方程:含有未知數的等式稱為方程.
使方程左右兩邊相等的未知數的值,叫做方程的解.
求方程的解的過程叫做解方程.
19、解方程原理:天平平衡.
等式左右兩邊同時加、減、乘、除相同的數(0除外),等式依然成立.
20、10個數量關系式:加法:和=加數+加數 一個加數=和-兩一個加數
減法:差=被減數-減數 被減數=差+減數 減數=被減數-差
乘法:積=因數×因數 一個因數=積÷另一個因數
除法:商=被除數÷除數 被除數=商×除數 除數=被除數÷商
21、所有的方程都是等式,但等式不一定都是等式.
22、方程的檢驗過程:方程左邊=…… 23、方程的解是一個數;
=…… 解方程式一個計算過程.
=方程右邊
所以,X=…是方程的解.
第五單元多邊形的面積
23、公式:長方形:周長=(長+寬)×2——【長=周長÷2-寬;寬=周長÷2-長】 字母公式:C=(a+b)×2
面積=長×寬 字母公式:S=ab
正方形:周長=邊長×4 字母公式:C=4a
面積=邊長×邊長 字母公式:S=a
平行四邊形的面積=底×高 字母公式: S=ah
三角形的面積=底×高÷2 ——【底=面積×2÷高;高=面積×2÷底】 字母公式: S=ah÷2
梯形的面積=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2
——【上底=面積×2÷高-下底,下底=面積×2÷高-上底;高=面積×2÷(上底+下底)】
24、平行四邊形面積公式推導:剪拼、平移 25、三角形面積公式推導:旋轉
平行四邊形可以轉化成一個長方形; 兩個完全一樣的三角形可以拼成一個平行四邊形,
長方形的長相當於平行四邊形的底; 平行四邊形的底相當於三角形的底;
長方形的寬相當於平行四邊形的高; 平行四邊形的高相當於三角形的高;
長方形的面積等於平行四邊形的面積, 平行四邊形的面積等於三角形面積的2倍,
因為長方形面積=長×寬,所以平行四邊形面積=底×高. 因為平行四邊形面積=底×高,所以三角形面積=底×高÷2
26、梯形面積公式推導:旋轉 27、三角形、梯形的第二種推導方法老師已講,自己看書
兩個完全一樣的梯形可以拼成一個平行四邊形, 知道就行.
平行四邊形的底相當於梯形的上下底之和;
平行四邊形的高相當於梯形的高;
平行四邊形面積等於梯形面積的2倍,
因為平行四邊形面積=底×高,所以梯形面積=(上底+下底)×高÷2
28、等底等高的平行四邊形面積相等;等底等高的三角形面積相等;
等底等高的平行四邊形面積是三角形面積的2倍.
29、長方形框架拉成平行四邊形,周長不變,面積變小.
30、組合圖形:轉化成已學的簡單圖形,通過加、減進行計算.
第六單元統計與可能性
31、平均數=總數量÷總份數
32、中位數的優點是不受偏大或偏小數據的影響,用它代表全體數據的一般水平更合適.
第七單元數學廣角
33、數不僅可以用來表示數量和順序,還可以用來編碼.
34、郵政編碼:由6位組成,前2位表示省(直轄市、自治區) 0 5 4 0 0 1
前3位表示郵區
前4位表示縣(市)
最後2位表示投遞局
35、身份證號碼:18位

1 3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9
河北省 邢台市 邢台縣 出生日期 順序碼 校驗碼
倒數第二位的數字用來表示性別,單數表示男,雙數表示女.
第一單元 倍數與因數(我們只在自然數(0除外)范圍內研究倍數和因數.)
1、像0、1、2、3、4、5、6……這樣的數是自然數.
2、像-3、-2、-1、0、1、2、3……這樣的數是整數.3、整數與自然數的關系:整數包括自然數.
4、倍數和因數: 舉例如4×5=20,20是4和5的倍數,4和5是20的因數,倍數和因數是相互依存的.
5、找倍數:從1倍開始有序的找.
6、一個數倍數的特點: ①一個數的倍數的個數是無限的;
②最小的倍數是它本身;
③沒有最大的倍數.
7、找因數:找一個數的因數,一對一對有序的找較好.
8、一個數因數的特點: ①一個數的因數的個數是有限的;
②最小的因數是1;
③最大的因數是它本身.
9、2的倍數的特徵:個位是0、2、4、6、8的數是2的倍數.
10、奇數和偶數:是2的倍數的數叫偶數,不是2的倍數的數叫奇數.
按一個數是不是2的倍數來分,自然數可以分成兩類:奇數和偶數
11、5的倍數的特徵:個位是0或5的數是5的倍數.
12、3的倍數的特徵:各個數位上的數字的和是3的倍數,這個數就是3的倍數.
13、既是2的倍數又是5的倍數的特徵:個位是0的數.
既是2的倍數又是3的倍數的特徵:①個位是0、2、4、6、8的數;
②各個數位上的數字的和是3的倍數
既是3的倍數又是5的倍數的特徵:①個位是0或5的數;
②各個數位上的數字的和是3的倍數
既是2的倍數又是3的倍數還是5的倍數的特徵: ①個位是0的數;
②各個數位上的數字的和是3的倍數
9的倍數的特徵:各個數位上的數字的和是9的倍數,這個數就是9的倍數
14、質數:一個數只有1和它本身兩個因數,這個數叫質數.最小的質數是2,是唯一的質數中的偶數.
100以內的質數:
15、合數:一個數除了1和它本身以外還有別的因數,這個數叫合數.
1既不是質數也不是合數,最小的合數是4.
16、按一個數的因數個數分,自然數可以分為三類.
第二單元 圖形的面積(一)
1、 長方形周長=(長+寬)×2 C = 2 ( a + b )
2、 長方形面積=長×寬 S = a b
3、 正方形周長=邊長×4 C = 4 a
4、 正方形面積=邊長×邊長 S = a 2
5、 平行四邊形面積=底×高 S = a h
6、 平行四邊形底=面積÷高 a = S ÷ h
7、 平行四邊形高=面積÷底 h = S ÷ a
8、 三角形面積=底×高÷2 S = a h ÷ 2
9、 三角形底=面積×2÷高 a = 2 S ÷ h
10、 三角形高=面積×2÷底 h = 2 S ÷ a
11、 梯形面積=(上底+下底)×高÷2 S = ( a + b ) h ÷ 2
12、 梯形高=梯形面積×2÷(上底+下底) h = 2 S ÷( a + b )
13、 梯形上底=梯形面積×2÷高-下底 a = 2 S ÷ h - b
14、 梯形下底=梯形面積×2÷高-上底 b = 2 S ÷ h - a
15、 1平方千米=100公頃=1000000平方米
16、 1公頃=10000平方米
17、 1平方米=100平方分米=10000平方厘米
第三單元 分數
1、 分數:把單位「1」平均分成若干份,表示這樣的一份或幾份的數,叫做分數.
2、 分母:表示平均分的份數.分子:表示取出的份數.
3、 分數單位:把單位「1」平均分成若干份,表示這樣的一份或幾份的數,叫做
分數.表示其中的一份的數,叫做這個分數的分數單位.
4、 真分數:分子小於分母的分數叫做真分數.真分數小於1.
5、 假分數:分子大於或等於分母的分數,叫做假分數.假分數都大於或等於1.
6、 帶分數:由整數和真分數組成的分數叫做帶分數.
7、 假分數化成帶分數:用分子除以分母,商是帶分數的整數部分,余數是帶分數分數部分的分子,分母不變.
8、 整數化成假分數:用指定的分母做分母,用整數與分母的積做分子.
9、 帶分數化成假分數:用帶分數的整數部分乘分母加分子做分子,分母不變.
10、 質因數:每個合數都可以寫成幾個質數相乘的形式,其中每個質數都是這個合數的因數,叫做這個合數的質因數.
11 把一個合數用質因數相乘的形式表示出來,叫做分解質因數. 如12=2×2×3
12、幾個數公有的因數叫做這幾個數的公因數.其中最大的一個,叫做它們的最大公因數.
13 互質:兩個數的公因數只有1,這兩個數叫做互質.
互質的規律:
(1) 相鄰的自然數互質;
(2) 相鄰的奇數都是互質數;
(3) 1和任何數互質;
(4) 兩個不同的質數互質
(5) 2和任何奇數互質.
質數與互質的區別:質數是就一個數而言,而互質是指兩個或兩個以上的數之間的關系;這些數本身不一定是質數,但它們之間最大的公因數是1,如8和9.
14、 幾個數公有的倍數叫做這幾個數的公倍數,其中最小的一個,叫做這幾個數的最小公倍數.
15、 求最大公因數,最小公倍數的方法
關系
最大公因數
最小公倍數
倍數關系
16、 分子分母互質的分數叫最簡分數,或者說分子分母的公因數只有的1的
分數是最簡分數.
17、 約分:把一個分數的分子和分母同時除以公因數,分數值不變,這個過
程叫做約分.計算結果通常用最簡分數表示.
18、 通分:把異分母分數分別化成同分母分數,叫通分.通常用最小公倍數
做分數的分母較簡便.
19、 如何比較分數的大小:
分母相同時,分子大的分數大;
分子相同時,分母小的分數大;
分子分母都不同時,通分再比.
20、 分數基本性質:分數的分子和分母同時乘或除以相同的數(零除外),分
數大小不變.
21、分數的意義兩種解釋:①把單位「1」平均分成4份,表示這樣的3份.
②把3平均分成4份,表示這樣的1份.
數學與交通:
1 相遇問題:
基本公式:一個人走:速度×時間=路程
兩個人同時相對而行:速度和×相遇時間=兩人共走路程
甲走的路程+乙走的路程=兩人共走的路程
2、旅遊費用:
①購票方案:根據人數的多少,價格的不同以及團體優惠人數的多少,合理選
擇一種方案購票或幾種方案結合起來購票.若只有A、B兩種方案是,只要選擇
其中一種價格便宜的就行.
②租車問題: 用列表法解決問題.兩個原則:多用單價低的,少空座.
3、看圖找關系:
①讀懂圖表中的有關信息,一定要分析橫軸與縱軸分別表示的是什麼.
②在速度與時間的關繫上,線往上畫,說明提速;與橫軸平行,說明勻速行
駛;線往下畫,說明減速.
③在時間與路程的問題上,線往上畫,說明從某地出發;與橫軸平行,說明
原地不動;線往下畫,說明又從終點回到某地.
第四單元 分數加減法
1, 異分母分數加減法:先通分,化成同分母分數,然後按照同分母分數加減法法則進行計算.
2, 對計算結果的要求:能約分的要約成最簡分數,是假分數要化成帶分數.
3, 分數化成小數的方法:用分子除以分母,除不盡的保留兩位小數.
4, 小數化成分數的方法:看小數部分有幾位,就在1的後面加幾個0做分母,去掉小數點做分子,能約分的要約分.
第五單元 圖形的面積(二)
1, 求組合圖形面積的方法:
(1) 分割法:將圖形進行合理分割,形成基本圖形,基本圖形面積的和就是組合圖形的面積.(和法)
(2) 添補法:將圖形所缺部分進行添補,組成幾個基本圖形,基本圖形面積-添補圖形面積=組合圖形面積.
2.不規則圖形面積的估算:
(1)數格子的方法.
(2)把不規則圖形看成近似的基本圖形,估算出面積.
雞兔同籠:
1, 列表法.
2, 假設法
3, 列方程
點陣中的規律:略
第六單元 可能性大小
1,用1表示事件一定發生,用0表示事件一定不會發生,用分數表示可能性的大小.
2,設計活動方案.
鋪地磚:
1, 地面面積除以每塊地磚面積=所鋪地磚塊數
2, 每平方米所需地磚塊數乘以地面面積=所鋪地磚塊數
3, 列方程
4, 注意:轉化單位,結果不是整塊數用進一法取近似值

④ 蘇教版小學五年級下冊數學總復習資料和知識重點

第一單元 方程

1、表示相等關系的式子叫做等式。

2、含有未知數的等式是方程。

3、方程一定是等式;等式不一定是方程。等式>方程

4、等式兩邊同時加上或減去同一個數,所得結果仍然是等式。這是等式的性質。

等式兩邊同時乘或除以同一個不等於0的數,所得結果仍然是等式。這也是等式的性質。

5、求方程中未知數的過程,叫做解方程。

解方程時常用的關系式:

一個加數=和-另一個加數 減數=被減數-差 被減數=減數+差

一個因數=積÷另一個因數 除數=被除數÷商 被除數=商×除數

注意:解完方程,要養成檢驗的好習慣。

6、五個連續的自然數(或連續的奇數,連續的偶數)的和,等於中間的一個數的5倍。奇數個連續的自然數(或連續的奇數,連續的偶數)的和÷個數=中間數

7、4個連續的自然數(或連續的奇數,連續的偶數)的和,等於中間兩個數或首尾兩個數的和×個數÷2(高斯求和公式)

8、列方程解應用題的思路:A、審題並弄懂題目的已知條件和所求問題。B、理清題目的等量關系。C、設未知數,一般是把所求的數用X表示。D、根據等量關系列出方程E、解方程F、檢驗G、作答。

第二單元 確定位置

1、確定位置時,豎排叫做列,橫排叫做行。確定第幾列一般從左往右數,確定第幾行一般從前往後數。

2、數對(x,y)第1個數表示第幾列(x),第2個數表示第幾行(y),寫數對時,是先寫列數,再寫行數。

3、從地球儀上看,連接北極和南極兩點的是經線,垂直於經線的線圈是緯線,經線和緯線、分別按一定的順序編排表示「經度」和「緯度」,「經度」和「緯度」都用度(°)、分(′)、秒(″)表示。

4、將某個點向左右平移幾格,只是列(x)上的數字發生加減變化,向左減,向右加,行(y)上的數字不變。舉例:將點(6,3)的位置向右平移2個單位後的位置是(8,3),列6+2=8;將點(6,3)的位置向左平移2個單位後的位置是(4,3),列6-2=4。

5、將某個點向上下平移幾格,只是行(y)上的數字發生加減變化,向上減,向下加,列(x)上的數字不變。舉例:將點(6,3)的位置向上平移2個單位後的位置是(6,5),行3+2=5;將點(6,3)的位置向下平移2個單位後的位置是(6,1),列3-2=1。

第三單元 公倍數和公因數

1、一個數最小的因數是1,最大的因數是它本身,一個數因數的個數是有限的。

一個數最小的倍數是它本身,沒有最大的倍數。一個數倍數的個數是無限的。

一個數最大的因數等於這個數最小的倍數。

2、幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個,叫做這幾個數的最小公倍數,用符號[ ,]表示。幾個數的公倍數也是無限的。

3、兩個數公有的因數,叫做這兩個數的公因數,其中最大的一個,叫做這兩個數的最大公因數,用符號( , )。兩個數的公因數也是有限的。

4、兩個素數的積一定是合數。舉例:3×5=15,15是合數。

5、兩個數的最小公倍數一定是它們的最大公因數的倍數。舉例:[6,8]=24,(6,8)=2,24是2的倍數。

6、求最大公因數和最小公倍數的方法:

倍數關系的兩個數,最大公因數是較小的數,最小公倍數是較大的數。舉例:15和5,[15,5]=15,(15,5)=5

素數關系的兩個數,最大公因數是1,最小公倍數是它們的乘積。舉例:[3,7]=21,(3,7)=1

一個素數和一個合數,最大公因數是1,最小公倍數是它們的乘積。[5,8]=40,(5,8)=1

相鄰關系的兩個數,最大公因數是1,最小公倍數是它們的乘積。[9,8]=72,(9,8)=1

特殊關系的數(兩個都是合數,一個是奇數,一個是偶數,但他們之間只有一個公因數1),比如4和9、4和15、10和21,最大公因數是1,最小公倍數是它們的乘積。

一般關系的兩個數,求最大公因數用列舉法或短除法,求最小公倍數用大數翻倍法或短除法。(詳見課本31頁內容)

數字與信息

1、我國目前採用的郵政編碼為「四級六碼」制。第一、二位代表省(自治區、直轄市),第三位代表郵區,第四位代表縣(市)郵電局,最後兩位是投遞局(區)的編號。

2、身份證編碼規則:1-6位數字為行政區劃代碼,其中1、2位數為各省級政府的代碼,3、4位數為地、市級政府的代碼,5、6位數為縣、區級政府代碼。 7-14位為您的出生日期,其中7-10位為出生年份(4位),11-12位為出生月份,13-14位為出生日期,15-17位為順序碼,是縣、區級政府所轄派出所的分配碼,其中單數為男性分配碼,雙數為女性分配碼。18位為校驗碼,是由號碼編制單位按照統一的公式計算得出來的,其取值范圍是0至10,當值等於10時,用羅馬數字元χ表示。

⑤ 人教版五年級下冊數學重要復習資料

九、解決問題的策略

1.學會用「倒過來推想」的策略解題。
十、圓

1.圓的特徵,圓心、半徑、直徑;
2.能用圓規畫指定大小的圓;

3.會用圓的知識解釋生活中的一些現象與解決一些簡單問題;
4.圓周率的含義;圓周長、面積計算。 ?

五年級下冊數學總復習 一、數與運算 《分數乘法》:
1、分數乘整數的意義:分數乘整數的意義同整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。
2、分數乘整數的計算方法:分母不變,分子和整數相乘的積作分子,能約分的要約成最簡分數,計算結果能化成整數的要化成整數。 註:0乘以任何數還得0。
3、分數乘分數的意義:求這個數的幾分之幾是多少。
4、分數乘分數的計算方法:分子相乘做分子,分母相乘做分母,能約分的可以先約分。計算結果要求是最簡分數。
註:理解打折的含義。例如:九折,是指現價是原價的十分之九。 六五折,是指現價是原價的百分之六十五。
5、知道一個數是多少,求這個數的幾分之幾是多少?這樣的應用題,可以用乘法解答。 《分數除法》
1、倒數:如果兩個數的乘積是1,那麼其中一個數是另一個數的倒數。倒數是對兩個數來說的,並不是孤立存在的。乘積是1的兩個數互為倒數。 2、求倒數的方法。
3、1的倒數仍是1;0沒有倒數。(理由:0沒有倒數,是因為在分數中,0不能做分母)。 4、一個數(A)除以另一個數(B)(零除外)等於乘這個數(B)的倒數。 5、分數除以整數表示的意義:就是求這個數的幾分之幾是多少。 6、比較商與被除數的大小。 除數小於1,商大於被除數;

除數等於1。商等於被除數;
除數大於1,商小於被除數。 《分數的混合運算》
1、分數的混合運算順序與整數混合運算順序相同。(有括弧先算括弧里,再算括弧外;沒括弧,先算乘除,再算加減;有乘有除,從左往右依次計算。除法先轉換成乘法再約分,最後結果是最簡分數)
2、整數運算定律在分數運算中同樣適用。 3、用方程解決有關分數混合運算的實際問題。 4、會利用線段圖來分析應用題題中的數量關系、 《百分數》
1、百分數的意義:表示一個數是另一個數的百分之幾的數叫作百分數,百分數又叫百分比、百分率。
2、百分數的讀法、寫法。
3、小數化成百分數的方法:把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。
4、分數化成百分數的方法:把分數化成百分數,可以先把分數化成小數(除不盡時,通常保留三位小數),再寫成百分數;也可以把分子分母同時乘一個數將其化成一百分之幾的數,再寫成百分數。
5、百分數化成小數、分數的方法。
百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。 百分數化成小數時,要把百分號去掉,同時把小數點向左移動兩位。
6、用方程解決「已知一個數的百分之幾多少,求這個數」的實際問題。 7、百分數和分數的區別:
意義不同:百分數只表示兩個數量之間的關系,後面不加單位;而分數既可以表示兩個數量之間的關系,也可以表示某個具體數量,可加單位。 讀法不同:百分數只讀作百分之幾,不讀作一百分之幾。 寫法不同
二、空間與圖形
1、長方體、正方體各自的特點: 3、知道正方體是特殊的長方體。
4、計算長方體、正方體的棱長總和:
長方體的棱長總和=(長 寬 高)?4或者是長?4 寬?4 高?4 正方體的棱長總和=棱長?12 5、長方體的表面積
長方體的表面積=長?寬?2 長?高?2 寬?高?2=(長?寬 長?高 寬?高)?2 正方體的表面積=棱長?棱長?6 6、計算露在外面的面的面積時:
首先數出露在外面的面的個數,再求露在外面的面的面積=露在外面的面的個數?一個面的面積。
《長方體(二)》
1、體積與容積的概念。
體積:物體所佔空間的大小叫作物體的體積。
容積:容器所能容納入體的體積叫做物體的容積。 2、體積單位
常用的體積單位有:立方厘米、立方分米、立方米。常用的容積單位有:升、毫升。 補充特殊的知識點:冰箱的容積用「升」作單位;我們飲用的自來水用「立方米」作單位。 3、長方體的體積
長方體的體積=長?寬?高
正方體的體積=棱長?棱長?棱長
長方體(正方體)的體積=底面積?高
4、不規則物體體積的測量方法和不規則物體體積的計算方法。 物體的體積=升高的水的體積=容器的底面積?水面上升的高度。 (參看課本55頁第二題) 5、體積、容積單位之間的進率。
1立方分米=1升,1立方厘米=1毫升,1升=1000毫升 1立方米=1000立方分米
( 相鄰兩個體積單位、容積單位之間的進率是1000) 6、其他單位之間的進率
1米=100厘米 1立方米=1000000立方厘米 長度單位:
1米=10分米 1分米=10厘米(相鄰兩個長度單位間的進率是10) 面積單位:
1平方米=100平方分米 1平方分米=100平方厘米 (相鄰兩個面積單位間的進率是100) 體積單位:
1立方分米=1000立方厘米 1立方米=1000立方分米 容積單位: 1升=1000毫升 質量單位:
1噸=1000千克 1千克=1000克 三、統計
1、扇形統計圖:以一個圓作為整體,把各部分所佔的百分比表現在這個圓中。 2、條形統計圖、扇形統計圖、折線統計圖的不同特點: 條形統計圖便於看出數據的多少;
扇形統計圖能清楚地看出整體與部分之間的關系; 折線統計圖能看出數據的變化趨勢(或變化情況)。
3、中位數和眾數
將一組數據從小到大(或從大到小)排列,中間的數稱為這組數據的中位數。 一組數據中出現次數最多的數稱為這組數據的眾數。 4、中位數和眾數的求法。
將一組數據按大小的順序排列,如果是奇數個數據,中間的數就為這組數據的中位數,如果是偶數個數據,中間兩個數的平均數為這組數據的中位數。眾數,就是一組數據中出現次數最多的。
四、重點題目

⑥ 數學五年級下冊所有知識大全

小學五年級數學下冊復習教學知識點歸納總結,期末測試試題習題大全
人教版五年級(下冊)數學知識點
一、圖形的變換
1、軸對稱圖形:把一個圖形沿著某一條直線對折,兩邊能夠完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸。
2、成軸對稱圖形的特徵和性質:①對稱點到對稱軸的距離相等;②對稱點的連線與對稱軸垂直;③對稱軸兩邊的圖形大小形狀完全相同。
3、物體旋轉時應抓住三點:①旋轉中心;②旋轉方向;③旋轉角度。旋轉只改變物體的位置,不改變物體的形狀、大小。
二、因數與倍數
1、因數和倍數:如果整數a能被b整除,那麼a就是b的倍數,b就是a的因數。
2、一個數的因數的求法:一個數的因數的個數是有限的,最小的是1,最大的是它本身,方法是成對地按順序找。
3、一個數的倍數的求法:一個數的倍數的個數是無限的,最小的是它本身,沒有最大的,方法時依次乘以自然數。
4、2、5、3的倍數的特徵:個位上是0、2、4、6、8的數,都是2的倍數。個位上是0或5的數,是5的倍數。一個數各位上的數的和是3的倍數,這個數就是3的倍數。
5、偶數與奇數:是2倍數的數叫做偶數(0也是偶數),不是2的倍數的數叫做奇數。
6、質數和和合數:一個數,如果只有1和它本身兩個因數的數叫做質數(或素數),最小的質數是2。一個數,如果除了1和它本身還有別的因數的數叫做合數,最小的合數是4。
三、長方體和正方體
1、長方體和正方體的特徵:長方體有6個面,每個面都是長方形(特殊的有一組對面是正方形),相對的面完全相同;有12條棱,相對的棱平行且相等;有8個頂點。正方形有6個面,每個面都是正方形,所有的面都完全相同;有12條棱,所有的棱都相等;有8個頂點。
2、長、寬、高:相交於一個頂點的三條棱的長度分別叫做長方體的長、寬、高。
3、長方體的棱長總和=(長+寬+高)×4 正方體的棱長總和=棱長×12
4、表面積:長方體或正方體6個面的總面積叫做它的表面積。
5、長方體的表面積=(長×寬+長×高+寬×高)×2 S=(ab+ah+bh)×2
正方體的表面積=棱長×棱長×6 用字母表示:S=
6、表面積單位:平方厘米、平方分米、平方米 相鄰單位的進率為100
7、體積:物體所佔空間的大小叫做物體的體積。
8、長方體的體積=長×寬×高 用字母表示:V=abh 長=體積÷(寬×高) 寬=體積÷(長×高)
高=體積÷(長×寬)
正方體的體積=棱長×棱長×棱長 用字母表示:V= a×a×a
9、體積單位:立方厘米、立方分米和立方米 相鄰單位的進率為1000
10、長方體和正方體的體積統一公式:長方體或正方體的體積=底面積×高 V=Sh
11、體積單位的互化:把高級單位化成低級單位,用高級單位數乘以進率;
把低級單位聚成高級單位,用低級單位數除以進率。
12、容積:容器所能容納物體的體積。
13、容積單位:升和毫升(L和ml) 1L=1000ml 1L=1000立方厘米 1ml=1立方厘米
14、容積的計算:長方體和正方體容器容積的計算方法跟體積的計算方法相同,但要從裡面量長、寬、高。
四、分數的意義和性質
1、分數的意義:把單位「1」平均分成若干份,表示這樣的一份或幾份的數,叫做分數。
2、分數單位:把單位「1」平均分成若干份,表示這樣的一份的數叫做分數單位。
3、分數與除法的關系:除法中的被除數相當於分數的分子,除數相等於分母,用字母表示:a÷b= (b≠0)。
4、真分數和假分數:分子比分母小的分數叫做真分數,真分數小於1。分子比分母大或分子和分母相等的分數叫做假分數,假分數大於1或等於1。由整數部分和分數部分組成的分數叫做帶分數。
5、假分數與帶分數的互化:把假分數化成帶分數,用分子除以分母,所得商作整數部分,余數作分子,分母不變。把帶分數化成假分數,用整數部分乘以分母加上分子作分子,分母不變。
6、分數的基本性質:分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變,這叫做分數的基本性質。
7、最大公因數:幾個數共有的因數叫做它們的公因數,其中最大的一個叫做最大公因數。
8、互質數:公因數只有1的兩個數叫做互質數。兩個數互質的特殊判斷方法:①1和任何大於1的自然數互質。②2和任何奇數都是互質數。③相鄰的兩個自然數是互質數。④相鄰的兩個奇數互質。⑤不相同的兩個質數互質。⑥當一個數是合數,另一個數是質數時(除了合數是質數的倍數情況下),一般情況下這兩個數也都是互質數。
9、最簡分數:分子和分母只有公因數1的分數叫做最簡分數。
10、約分:把一個分數化成和它相等,但分子和分母都比較小的分數,叫做約分。
11、最小公倍數:幾個數共有的倍數叫做它們的公倍數,其中最小的一個叫做最小公倍數。
12、通分:把異分母分數分別化成和原來分數相等的同分母分數,叫做通分。
13、特殊情況下的最大公因數和最小公倍數:
①成倍數關系的兩個數,最大公因數就是較小的數,最小公倍數就是較大的數。②互質的兩個數,最大公因數就是1,最小公倍數就是它們的乘積。
14、分數的大小比較:同分母的分數,分子大的分數就大,分子小的分數就小;同分子的分數,分母大的分數反而小,分母小的分數反而大。
15、分數和小數的互化:小數化分數,一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾……,去掉小數點作分子,能約分的必須約成最簡分數;分數化小數,用分子除以分母,除不盡的按要求保留幾位小數。
五、分數的加法和減法
1、同分母分數的加減法:同分母分數相加、減,分母不變,只把分子相加減。
2、異分母分數的加減法:異分母分數相加、減,先通分,再按照同分母分數加減法的方法進行計算。
3、分數加減混合運算的運算順序與整數加減混合運算的順序相同。在一個算式中,如果含有括弧,應先算括弧裡面的,再算括弧外面的;如果只含有同一級運算,應從左到右依次計算。
六、打電話
1、逐個法:所需時間最多;
2、分組法:相對節約時間;
3、同時進行法:最節約時間。
1. 因為2×6=12,我們就說2和6是12的因數,12是2的倍數,也是6的倍數。不能單獨說誰是倍數或因數
2. 求一個數的因數,用乘法一對一對找,寫的時候一般都是從小到大排列的
3. 求一個數的倍數,用一個數去乘1、乘2、乘3、乘4……
4. 一個數的最小因數是1,最大的因數是它本身,一個數的因數的個數是有限的。
5. 一個數的最小的倍數是它本身,沒有最大的倍數,一個數的倍數的個數是無限的。
6. 個位上是 0,2,4,6,8的數,都是2的倍數,也是偶數。
7. 自然數中,是2的倍數的數叫做偶數(0也是偶數)。不是2的倍數的數叫奇數。
8. 個位上是0或者5的數,都是5的倍數。
9. 個位是0的數,既是2的倍數,又是5的倍數。
10. 一個數各位上的和是3的倍數,這個數就是3的倍數。
11. 只有1和它本身兩個因數的數叫做質數(或素數),除了1和它本身還有別的因數的數叫做合數。1既不是質數,也不是合數。
12. 整數按因數的個數來分類:1,質數,合數。整數按是否是2的倍數來分類:奇數,偶數
13. 將合數分解成幾個質數相乘的形式就叫做分解質因數。分解質因數用短除法,把36分解質因數是?
14. 最小的質數是2,最小合數是4,最小奇數是1,最小偶數是0,同時是2,5,3倍數的最小數是30,最小三位數是120
15. 奇數加奇數等於偶數。奇數加偶數等於奇數。偶數加偶數等於偶數。
16. a是c的倍數,b是c的倍數,那麼a+b的和是c的倍數,c是a+b和的因數,a-b的差是c的倍數,c是a-b差的因數。
17. 如果一個圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形就是軸對稱圖形。摺痕所在的這條直線叫做對稱軸。
18. 軸對稱圖形特徵:對應點到對稱軸的距離相等,對應點連線垂直於對稱軸
19. 長方體有6個面。每個面都是長方形(可能有兩個相對的面是正方形),相對的面大小相等(完全相同)。
20. 長方體有12條棱,分為三組,相對的4條棱長度相等。
21. 長方體有8個頂點。
22. 相交於一個頂點的三條棱的長度分別叫做長方體的長、寬、高
23. 正方體有6個面, 6個面都是正方形 ,6個面完全相等,正方體有12條棱, 12條棱長度都相等,正方體有8個頂點
24. 長方體棱長之和:(長+寬+高)×4 長×4+寬×4+高×4
25. 正方體棱長之和:棱長×12
26. 長方體(正方體)6個面的總面積,叫做它的表面積。
27. 長方體表面積=(長×寬+寬×高+長×高)×2 或長方體表面積=長×寬×2+寬×高×2+長×高×2
28. 正方體表面積=棱長×棱長×6
29. 計量體積要用體積單位,常用的體積單位有立方厘米,立方分米,立方米,可以分別寫成cm3 dm3 m3
30. 棱長是1cm的正方體,體積是1 cm3,棱長是1cm的正方體,體積是1 dm3,棱長是1cm的正方體,體積是1 m3
31. 長方體所含體積單位的數量就是長方體的體積。長方體的體積=長×寬×高,v=abh;正方體體積=棱長×棱長×棱長,v=a3 =a×a×a a3表示3個a相乘
32. 相鄰兩個體積單位間的進率是1000,相鄰兩個面積單位間的進率是1000,相鄰兩個長度單位間的進率是10,1立方米=1000立方分米,1立方分米=1立方厘米,1升=1000毫升,1立方米=1000000立方厘米,計量容積一般用體積單位,計量液體的體積,用升和毫升
33. 一個物體、一些物體等都可以看作一個整體,一個整體可以用自然數1來表示,通常把它叫做單位「1」。
34. 把單位「1」平均分成若干份,表示這樣的一份或幾份的數叫做分數。例如:表示把單位「1」平均分成7份,表示這樣的3份。其中表示一份的數叫做分數單位。
35. 米表示
(1) 把5米看作單位「1」,把單位「1」平均分成8份,表示這樣的1份,就是米,算式:5÷8=(米)
(2) 把1米看作單位「1」,把單位「1」平均分成8份,表示這樣的5份,就是米,算式:1÷8=(米),5個米就是米
36. 當整數除法得不到整數的商時,可以用分數表示除法的商。在用分數表示整數除法的商時,分數的分子相當於除法的被除數,分數的分母相當於除法的除數,除號相當於分數中的分數線。(除數不能為0)區別:分數是一種數,除法是一種運算
37. 分子比分母小的分數叫真分數,真分數小於1。分子比分母大或分子和分母相等的分數叫做假分數,假分數大於或等於1。
38. 帶分數包括整數部分和分數部分。假分數化成帶分數,用分子除以分母所得的商作為帶分數的整數部分,余數作為分子,分母不變。帶分數化成假分數時,用整數部分和分母相乘再加分子所得結果作分子,分母不變。
39. A是B的幾分之幾?用A÷B
40. 分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。這叫做分數的基本性質。
41. 幾個數公有的因數,叫做這幾個數的公因數。其中最大的一個叫做這幾個數的最大公因數。通常把每個數分解質因數,把它們所有的公有質因數相乘,來求最大公因數。
42. 如果兩個數的公因數只有1,這兩個數是互質數。兩個連續自然數;兩個質數;1和其他自然數一定是互質數。
43. 分子和分母只有公因數1的分數叫做最簡分數。把一個分數化成和它相等,但分子分母比較小的分數,叫做約分。
44. 幾個數公有的倍數,叫做這幾個數的公倍數。其中最小的一個叫做這幾個數的最小公倍數。通常把每個數分解質因數,把它們所有的公有質因數和獨有質因數相乘,來求最小公倍數。
45. 把異分母分數分別化成和原來分數相等的同分母分數(公分母),叫做通分。
46. 求三個數的最大公因數和最小公倍數時,可以先求其中兩個數的最大公因數和最小公倍數,用求出的最大公因數和最小公倍數再與第三個數求最大公因數和最小公倍數。
47. 如果兩個數是倍數關系,那麼兩個數的最大公因數是較小數,最小公倍數是較大數。
48. 如果兩個數公因數只有1,那麼這兩個數的最大公因數是1,最小公倍數是它們的乘積。
49. 兩個數公因數只有1的幾種特殊情況:1和其他自然數,相鄰兩個自然數,兩個質數。
50. 分數化成小數:用分子除以分母化成小數。小數化成分數:把小數寫成分母是10,100,1000……的分數,然後再化成最簡分數。

⑦ 五年級數學下冊期末復習資料是什麼

五年級數學下冊期末知識點整理與復習

一 圖形的變換

平移:物體或圖形平移後本身的形狀、大小和方向都不會改變。

軸對稱: 如果一個圖形沿著一條直線對折後兩部分完全重合,這樣的圖形叫做軸對稱圖形, 這條直線叫做對稱軸。

軸對稱圖形的特徵和性質:①對應點到對稱軸的距離相等;②對應點的連線與對稱軸垂直;③對稱軸兩邊的圖形大小、形狀完全相同。 平行四邊形(除菱形)不是軸對稱圖形

旋轉:在平面內,一個圖形繞著一個頂點旋轉一定的角度得到另一個圖形的變化叫做旋轉,定點O叫做旋轉中心。

物體旋轉時應抓住三點:① 旋轉中心;② 旋轉方向;③ 旋轉角度。

旋轉的性質:旋轉只改變物體的位置(旋轉中心位置不會變)不改變物體的形狀大小。

二 因數和倍數

1、因數和倍數。

如果整數a能被b整除,那麼a就是b的倍數,b就是a的因數。(大數能被小數整除時,大數是小數的倍數,小數是大數的因數。)因數和倍數是相互依存的,不能單獨存在。

因數:一個數的因數的個數是有限的,其中最小的因數是1,最大的因數是它本身。 一個數的因數的求法:成對地按順序找。

倍數:一個數的倍數的個數是無限的,最小的倍數是它本身。 一個數的倍數的求法:依次乘自然數。

2、自然數按能不能被2整除來分:奇數 偶數 奇數:不能被2整除的數 偶數:能被2整除的數。

最小的奇數是1,最小的偶數是0。 2、3、5倍數的特徵:

個位上是0,2,4,6,8的數都是2的倍數。 個位上是0或5的數,是5的倍數。

一個數各位上的數的和是3的倍數,這個數就是3的倍數。 如果一個數同時是2和5的倍數,那它的個位上的數字一定是0。 能同時被2、3、5整除的最大的兩位數是90,最小的三位數是120。

5、公因數、最大公因數

幾個數公有的因數叫這些數的公因數。其中最大的那個就叫它們的最大公因數。

用短除法求兩個數或三個數的最大公因數 (除到互質為止,把所有的除數連乘起來)

幾個數的公因數只有1,就說這幾個數互質。 兩數互質的特殊情況:

⑴1和任何自然數互質;⑵相鄰兩個自然數互質; ⑶兩個質數一定互質; ⑷2和所有奇數互質; ⑸質數與比它小的合數互質;

如果兩數是倍數關系時,那麼較小的數就是它們的最大公因數。 如果兩數互質時,那麼1就是它們的最大公因數。

6、公倍數、最小公倍數

幾個數公有的倍數叫這些數的公倍數。其中最小的那個就叫它們的最小公倍數。

用短除法求兩個數的最小公倍數(除到互質為止,把所有的除數和商連乘起來) 用短除法求三個數的最小公倍數(除到兩兩互質為止,把所有的除數和商連乘起來) 如果兩數是倍數關系時,那麼較大的數就是它們的最小公倍數。 如果兩數互質時,那麼它們的積就是它們的最小公倍數。

三 長方體和正方體

【概念】

1、長方體和正方體都是立體圖形。正方體也叫立方體。

2、相交於一個頂點的三條棱的長度分別叫做長方體的長、寬、高。(長、寬、高都各有4條,分別平行並且相等)

3、長方體的特徵:

① 面:有6個面,都是長方形(特殊情況下最多有兩個相對的面是正方形)。相對的面完全相同。

② 棱:有12條棱。相對的棱長度相等。 ③ 頂點:有8個頂點。

4、正方體的特徵:

① 面:有6個面都是正方形,6個面完全相同。 ② 棱:有12條棱。12條棱的長度相等。 ③ 頂點:有8個頂點。

http://wenku..com/link?url=8bcUFVVbkek_zotfdvTOrQ1DVpdO-ov-BJw907ENL6tQ7zGt_HvKtULVB2tVupeHjYjTN3f__