當前位置:首頁 » 同學友情 » 如何用數學知識定義高中同學
擴展閱讀
知識錯誤英語 2025-01-11 17:42:27
社會公共基礎知識有哪些 2025-01-11 17:34:10
天秤座的冷知識大全 2025-01-11 17:26:32

如何用數學知識定義高中同學

發布時間: 2024-10-26 00:06:37

❶ 一個人說「我走起路來步子大,一步能走三米多。」同學們,你信嗎你能用學過的數學知識指出他的錯誤嗎

不信
步子與兩腿能構成三角形
三角形兩邊之和一定大於第三邊
一步能走三米多,就是兩腿長之和一定要大於「三米多」
這樣是不符合實際的

❷ 高中必修三數學知識點總結

高中必修三數學知識點總結

在日常過程學習中,是不是聽到知識點,就立刻清醒了?知識點也不一定都是文字,數學的知識點除了定義,同樣重要的公式也可以理解為知識點。還在苦惱沒有知識點總結嗎?以下是我收集整理的高中必修三數學知識點總結,歡迎閱讀與收藏。

第一章 演算法初步

1.1.1

演算法的概念

演算法的特點:

(1)有限性:一個演算法的步驟序列是有限的,必須在有限操作之後停止,不能是無限的.

(2)確定性:演算法中的每一步應該是確定的並且能有效地執行且得到確定的結果,而不應當是模稜兩可.

(3)順序性與正確性:演算法從初始步驟開始,分為若干明確的步驟,每一個步驟只能有一個確定的後繼步驟,前一步是後一步的前提,只有執行完前一步才能進行下一步,並且每一步都准確無誤,才能完成問題.

(4)不唯一性:求解某一個問題的解法不一定是唯一的,對於一個問題可以有不同的演算法.

(5)普遍性:很多具體問題,都可以設計合理的演算法去解決,如心算、計算器計算都要經過有限、事先設計好的步驟加以解決.

1.1.2

程序框圖

(一)程序構圖概念:程序框圖又稱流程圖,是一種用規定圖形、流程線及文字說明來准確、直觀地表示演算法的圖形。

(二)構成程序框的圖形符號及其作用

學習這部分知識的時候,要掌握各個圖形的形狀、作用及使用規則,畫程序框圖的規則如下:

1、使用標準的圖形符號。

2、框圖一般按從上到下、從左到右的方向畫。

3、除判斷框外,大多數流程圖符號只有一個進入點和一個退出點。判斷框具有超過一個退出點的唯一符號。

4、判斷框分兩大類,一類判斷框「是」與「否」兩分支的判斷,而且有且僅有兩個結果;另一類是多分支判斷,有幾種不同的結果。

5、在圖形符號內描述的語言要非常簡練清楚。

(三)、演算法的三種基本邏輯結構:順序結構、條件結構、循環結構。

1、順序結構:順序結構是最簡單的演算法結構,語句與語句之間,框與框之間是按從上到下的順序進行的,它是由若干個依次執行的處理步驟組成的,它是任何一個演算法都離不開的一種基本演算法結構。

順序結構在程序框圖中的體現就是用流程線將程序框自上而 下地連接起來,按順序執行演算法步驟。如在示意圖中,A框和B 框是依次執行的,只有在執行完A框指定的操作後,才能接著執 行B框所指定的操作。

2、條件結構:

條件結構是指在演算法中通過對條件的判斷 根據條件是否成立而選擇不同流向的演算法結構。

條件P是否成立而選擇執行A框或B框。無論P條件是否成立,只能執行A框或B框之一,不可能同時執行A框和B框,也不可能A框、B框都不執行。一個判斷結構可以有多個判斷框。

3、循環結構:在一些演算法中,經常會出現從某處開始,按照一定條件,反復執行某一處理步驟的情況,這就是循環結構,反復執行的處理步驟為循環體,顯然,循環結構中一定包含條件結構。循環結構可細分為兩類:

(1)、一類是當型循環結構,如下左圖所示,它的功能是當給定的條件P成立時,執行A框,A框執行完畢後,再判斷條件P是否成立,如果仍然成立,再執行A框,如此反復執行A框,直到某一次條件P不成立為止,此時不再執行A框,離開循環結構。

(2)、另一類是直到型循環結構,如下右圖所示,它的功能是先執行,然後判斷給定的條件P是否成立,如果P仍然不成立,則繼續執行A框,直到某一次給定的條件P成立為止,此時不再執行A框,離開循環結構。

注意:1循環結構要在某個條件下終止循環,這就需要條件結構來判斷。因此,循環結構中一定包含條件結構,但不允許「死循環」。

2在循環結構中都有一個計數變數和累加變數。計數變數用於記錄循環次數,累加變數用於輸出結果。計數變數和累加變數一般是同步執行的,累加一次,計數一次。

1.2.1

輸入、輸出語句和賦值語句

3、賦值語句

(1)賦值語句的一般格式;

(2)賦值語句的作用是將表達式所代表的值賦給變數;

(3)賦值語句中的「=」稱作賦值號,與數學中的等號的意義是不同的。賦值號的左右兩邊不能對換,它將賦值號右邊的表達式的值賦給賦值號左邊的變數;

(4)賦值語句左邊只能是變數名字,而不是表達式,右邊表達式可以是一個數據、常量或算式;

(5)對於一個變數可以多次賦值。

注意:①賦值號左邊只能是變數名字,而不能是表達式。如:2=X是錯誤的。②賦值號左右不能對換。如「A=B」「B=A」的含義運行結果是不同的。③不能利用賦值語句進行代數式的演算。(如化簡、因式分解、解方程等)④賦值號「=」與數學中的等號意義不同。

分析:在IF—THEN—ELSE語句中,「條件」表示判斷的條件,「語句1」表示滿足條件時執行的操作內容;「語句2」表示不滿足條件時執行的操作內容;END IF表示條件語句的結束。計算機在執行時,首先對IF後的條件進行判斷,如果條件符合,則執行THEN後面的語句1;若條件不符合,則執行ELSE後面的語句2 1.3.1輾轉相除法與更相減損術。

1、輾轉相除法。也叫歐幾里德演算法,用輾轉相除法求最大公約數的步驟如下:

(1):用較大的數m除以較小的數n得到一個商≠0,則用除數n除以余數則用除數RRS0和一個余數R0;

(2):若0=0,則n為m,n的最大公約數;若0R0得到一個商S1和一個余數R1;RRR;

(3):若1=0,則1為m,n的最大公約數;若1≠0,R0除以余數R1得到一個商S2和一個余數R2;依次計算直至Rn=0,此時所得到的Rn?1即為所求的最大公約數。

2、更相減損術

我國早期也有求最大公約數問題的演算法,就是更相減損術。在《九章算術》中有更相減損術求最大公約數的步驟:可半者半之,不可半者,副置分母?子之數,以少減多,更相減損,求其等也,以等數約之。

翻譯為:(1):任意給出兩個正數;判斷它們是否都是偶數。若是,用2約簡;若不是,執行第二步。(2):以較大的數減去較小的數,接著把較小的數與所得的差比較,並以大數減小數。繼續這個操作,直到所得的數相等為止,則這個數(等數)就是所求的最大公約數。 例2 用更相減損術求98與63的最大公約數。

3、輾轉相除法與更相減損術的區別:

(1)都是求最大公約數的`方法,計算上輾轉相除法以除法為主,更相減損術以減法為主,計算次數上輾轉相除法計算次數相對較少,特別當兩個數字大小區別較大時計算次數的區別較明顯。

(2)從結果體現形式來看,輾轉相除法體現結果是以相除余數為0則得到,而更相減損術則以減數與差相等而得到。

1.3.2

秦九韶演算法與排序

1、秦九韶演算法概念:

f(x)=anxn+an-1xn-1+….+a1x+a0求值問題

f(x)=anxn+an-1xn-1+….+a1x+a0=( anxn-1+an-1xn-2+….+a1)x+a0 =(( anxn-2+an-1xn-3+….+a2)x+a1)x+a0

=......=(...( anx+an-1)x+an-2)x+...+a1)x+a0

求多項式的值時,首先計算最內層括弧內依次多項式的值,即v1=anx+an-1

然後由內向外逐層計算一次多項式的值,即 v2=v1x+an-2 v3=v2x+an-3......vn=vn-1x+a0

這樣,把n次多項式的求值問題轉化成求n個一次多項式的值的問題。

第二章 統計

2.1.1

簡單隨機抽樣

1.總體和樣本

在統計學中 , 把研究對象的全體叫做總體.把每個研究對象叫做個體.把總體中個體的總數叫做總體容量. 為了研究總體的有關性質,一般從總體中隨機抽取一部分:研究,我們稱它為樣本.其中個體的個數稱為樣本容量。

2.簡單隨機抽樣,也叫純隨機抽樣。就是從總體中不加任何分組、劃類、排隊等,完全隨機地抽取調查單位。特點是:每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨立,彼此間無一定的關聯性和排斥性。簡單隨機抽樣是其它各種抽樣形式的基礎。通常只是在總體單位之間差異程度較小和數目較少時,才採用這種方法。

3.簡單隨機抽樣常用的方法:

(1)抽簽法;⑵隨機數表法;⑶計算機模擬法;⑷使用統計軟體直接抽取。在簡單隨機抽樣的樣本容量設計中,主要考慮:①總體變異情況;②允許誤差范圍;③概率保證程度。

4.抽簽法:

(1)給調查對象群體中的每一個對象編號;

(2)准備抽簽的工具,實施抽簽;

(3)對樣本中的每一個個體進行測量或調查。

例:請調查你所在的學校的學生做喜歡的體育活動情況。

5.隨機數表法:例:利用隨機數表在所在的班級中抽取10位同學參加某項活動。

2.1.2

系統抽樣

1.系統抽樣(等距抽樣或機械抽樣):把總體的單位進行排序,再計算出抽樣距離,然後按照這一固定的抽樣距離抽取樣本。第一個樣本採用簡單隨機抽樣的辦法抽取。K(抽樣距離)=N(總體規模)/n(樣本規模)

前提條件:總體中個體的排列對於研究的變數來說,應是隨機的,即不存在某種與研究變數相關的規則分布。可以在調查允許的條件下,從不同的樣本開始抽樣,對比幾次樣本的特點。如果有明顯差別,說明樣本在總體中的分布承某種循環性規律,且這種循環和抽樣距離重合。

2.系統抽樣,即等距抽樣是實際中最為常用的抽樣方法之一。因為它對抽樣框的要求較低,實施也比較簡單。更為重要的是,如果有某種與調查指標相關的輔助變數可供使用,總體單元按輔助變數的大小順序排隊的話,使用系統抽樣可以大大提高估計精度。

2.1.3

分層抽樣

1.分層抽樣(類型抽樣):先將總體中的所有單位按照某種特徵或標志(性別、年齡等)劃分成若干類型或層次,然後再在各個類型或層次中採用簡單隨機抽樣或系用抽樣的辦法抽取一個子樣本,最後,將這些子樣本合起來構成總體的樣本。

兩種方法:

(1).先以分層變數將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。

(2).先以分層變數將總體劃分為若干層,再將各層的元素按分層的順序整齊排列,最後用系統抽樣的方法抽取樣本。

2.分層抽樣是把異質性較強的總體分成一個個同質性較強的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進而代表總體。

分層標准:

(1)以調查所要分析和研究的主要變數或相關的變數作為分層的標准。

(2)以保證各層內部同質性強、各層之間異質性強、突出總體內在結構的變數作為分層變數。

(3)以那些有明顯分層區分的變數作為分層變數。

3.分層的比例問題:

(1)按比例分層抽樣:根據各種類型或層次中的單位數目占總體單位數目的比重來抽取子樣本的方法。

(2)不按比例分層抽樣:有的層次在總體中的比重太小,其樣本量就會非常少,此時採用該方法,主要是便於對不同層次的子總體進行專門研究或進行相互比較。如果要用樣本資料推斷總體時,則需要先對各層的數據資料進行加權處理,調整樣本中各層的比例,使數據恢復到總體中各層實際的比例結構。 2.2.2用樣本的數字特徵估計總體的數字特徵。

;

❸ 如何培養學生用數學知識解決實際問題的能力

數學問題解決能力是指學生靈活運用數學知識和方法解決數學與現實生活中問題的能力。解決問題是數學的核心,解決問題的能力是學生數學素養的重要標志。如何培養學生解決數學問題的能力呢?
一、在實際生活尋找數學,激發學生的應用意識
俗話說:「與其拉馬飲水,不如讓其感到口渴。」所以,在教學中,教師如何激發學生如飢似渴投入到學習中。經過實踐,教師與其不斷地強調數學應用的重要性,不如讓學生輕輕愉快地走進生活的大課堂,尋找生活中的數學,從中體現到感知數學的地位與價值。為此,要求每個學生,堅持寫數學日記,記錄自己或別人應用數學的情況,從收集日常生活中的信息,並及時加以記錄和整理。
有一次在上數學課的時候,教師要求學生將自己在「日記部」中記錄應用數學知識的問題向同學匯報,這時,學生紛紛舉手,爭著回答:有的說我和媽媽去商場購物,她買洗衣粉用去12元,買蘋果用去18元,買豬肉用去23元,共用人民幣53元。學生的踴躍發言,擴大學生信息交流,擴大學生的信息儲備,從中領悟到數學就在我們的身邊,數學與生活是息息相關的。
二、運用數學知識來解決生活問題,提高學生應用知識能力
學生是學習的主體,在教學中只有充分發揮學生的主體作用。學習數學知識就是為了解決日常生活中遇到的困難,運用數學知識解決生活問題是數學學習的歸宿,教師應該注意指導學生把學到的數學知識應用到現實生活中。如學完《最大公約數》後,讓學生設計一個用方磚鋪會議室長是8.3米,寬是7.5米,經過同學們的討論,學生設計用40c m× 40c m、50c m× 50c m、60c m×60c m、70c m×70c m等規格的方磚來鋪地的幾種方案。再經過學生的交流和優化,最後選出用50c m×50c m的方磚的方案。理由是:選用這種方案,可以全部都用整塊的方磚,既美觀,又不造成浪費,比較經濟實惠。通過這樣的學習,讓學生感受到數學識識是解決生活和工作中的問題的有力武器,也是提高學生解決問題的能力。
三、在信息中學會做數學,激發學生運用知識能力
收集和運用信息進行學習是新新課程的要求,在學生收集整理生活中的數學信息時,教師不光從數學角度還要從多方面去引導學生進行分析和取捨這些信息,讓學生運用這些正確的信息進行學習,提高學生的學習效率。如有一位學生根據生活實際編了一道題:星期天我們全家去運河商場買東西,爸爸買了一包4元錢的紅梅煙,媽媽花5元錢買了一袋花生,我買了一本詞典和兩本書,一共用了45元錢。我花的錢是爸爸媽媽花的和的幾倍?他列式為:45÷(4+5),計算結果等於9。這個學生做出這樣的結果使我心中受到觸動,我問全班同學:「同學們,你們有什麼看法,還有什麼話要補充的?」這時,有的學生說:「這個學生用的錢太多了。」有的學生說:「爸爸媽媽捨不得花錢,我們也不能太浪費,應該向他爸爸媽媽學習」還有的學生說:「爸爸媽媽讓我們吃得好、穿得好,我們要更加認真學習,用好成績來回報他們」……這些話不正體現了《數學新課程標准》中提出的「學生獲得對數學理解的同時,在情感態度與價值觀等方面也要同時得到進步和發展」。
四、鼓勵學生用數學知識解決實際問題,提高學生應用知識能力
數學不是單獨存在的,它來源於生活,又服務於生活。將數學問題生活化,就有利於縮短數學與生活的距離,加強數學與生活的緊密聯系,發揮數學知識的在教學中的應用。這樣,既滿足了學生學習和理解數學知識的需要,又讓學生體會數學的價值。所以,在教學中,教師要注意指導學生用數學的眼光看問題,用數學的頭腦想問題,提高學生的解決問題的能力。
如教師要求學生利用空餘時間,把學校的籃球場面積計算出來,在第三天上課的時候,教師要求讓學生把自己計算的結果告訴同學,談談自己是怎樣運用知識去解決問題。有的學生說:「我丈量出籃球場長是56米,寬45米,根據長方形公式=長Ⅹ寬,即是56Ⅹ45=2520平方米、;有的學生說我尺來量出來;由於學生通過親自的丈量,並通過計算,把學校的一塊空地計算出來,學生能夠計算出來,這表現了學生不但能夠親自實踐,而且在能夠運用數學知識,解決生活中的實際問題。
五、讓學生在開發性的問題中,提高學生解決問題能力
《數學課程標准》指出:「數學教學要充分考慮學生的身心發展特點,結合他們的生活經驗和已有知識,設計富有情趣和意義的活動,使他們有更多的機會從周圍熟悉的事物中學習和理解數學。」在數學教學中,教師充分利用教材的內容進行教學,並利用教材中的開放性問題培養學生的思維能力,對學生進行思維能力的訓練,可以使學生思維更敏捷,提高學生分析問題和解決問題的能力。
如在教學生學習「10的加減法」時,教材上有一副圖畫,讓學生通過觀察,學生知道畫的是8個小朋友,10把椅子,教師啟發學生:「小朋友坐下來後,還有2把椅子是空著的?」學生經地思考,有的學生提出自己不同的解答方法。張小明同學提出的是用連線的方法:「一個人和一把椅子相連,最後還有兩把椅子沒有人相連,就有兩個椅子是空著。」同學們在互相交流中提出了不同的解答方法,其它學生從中得到啟發,促進學生創造性地解決問題,培養了學生的創新能力。
總之,教師在教學中堅持以學生為本,應著眼於學生的生活經驗和實踐經驗,開啟學生的視野,拓寬學生學習的空間,最大限度地挖掘學生的潛能,從而使學生體驗數學與日常生活的密切聯系,培養學生從周圍情境中發現數學問題,運用所學知識解決實際問題的能力,發展學生的應用意識和形成解決問題的策略。讓學生在各種數學運算中提高學生運用知識的能力,促進自身的主動發展。

❹ 請系統地教教我數學歸納法,包括它的定義,如何使用,有什麼技巧等等。謝謝!

理、定義等之間的關系理清楚,對於數學中的所有的公式、定理、定義都不能靠背,背是沒有用的,首先你要理解它們,將每個公式、定理、定義的關系推導清楚,它們之間都有一定的關聯,只有當你理清它們之間的關系以後,久而久之,你自然就記住所有公式、定理、定義了,而靠背共識,背定理、定義是學不好數學的,如果你沒有如果你沒有將他們理解透徹,即使你背下來了,也一樣不會運用不會做題,所以只有做到這點,你在解數學題時就不會再有障礙了,你的數學一定會突飛猛進的。
怎樣學好高中數學
一、 高中數學課的設置
高中數學內容豐富,知識面廣泛,將有:《代數》上、下冊、《立體幾何》和《平面解析幾何》四本課本,高一年級學習完《代數》上冊和《立體幾何》兩本書。高二將學習完《代數》下冊和《平面解析幾何》兩本書。一般地,在高一、高二全部學習完高中的所有高中三年的知識內容,高三進行全面復習,高三將有數學「會考」和重要的「高考」。
二、初中數學與高中數學的差異。
1、知識差異。
初中數學知識少、淺、難度容易、知識面笮。高中數學知識廣泛,將對初中的數學知識推廣和引伸,也是對初中數學知識的完善。如:初中學習的角的概念只是「0—1800」范圍內的,但實際當中也有7200和「—300」等角,為此,高中將把角的概念推廣到任意角,可表示包括正、負在內的所有大小角。又如:高中要學習《立體幾何》,將在三維空間中求一些幾何實體的體積和表面積;還將學習「排列組合」知識,以便解決排隊方法種數等問題。如:①三個人排成一行,有幾種排隊方法,( =6種);②四人進行乒乓球雙打比賽,有幾種比賽場次?(答: =3種)高中將學習統計這些排列的數學方法。初中中對一個負數開平方無意義,但在高中規定了i2=-1,就使-1的平方根為±i.即可把數的概念進行推廣,使數的概念擴大到復數范圍等。這些知識同學們在以後的學習中將逐漸學習到。
2、學習方法的差異。
(1)初中課堂教學量小、知識簡單,通過教師課堂教慢的速度,爭取讓全面同學理解知識點和解題方法,課後老師布置作業,然後通過大量的課堂內、外練習、課外指導達到對知識的反反復復理解,直到學生掌握。而高中數學的學習隨著課程開設多(有九們課學生同時學習),每天至少上六節課,自習時間三節課,這樣各科學習時間將大大減少,而教師布置課外題量相對初中減少,這樣集中數學學習的時間相對比初中少,數學教師將相初中那樣監督每個學生的作業和課外練習,就能達到相初中那樣把知識讓每個學生掌握後再進行新課。
(2)模仿與創新的區別。
初中學生模仿做題,他們模仿老師思維推理教多,而高中模仿做題、思維學生有,但隨著知識的難度大和知識面廣泛,學生不能全部模仿,即就是學生全部模仿訓練做題,也不能開拓學生自我思維能力,學生的數學成績也只能是一般程度。現在高考數學考察,旨在考察學生能力,避免學生高分低能,避免定勢思維,提倡創新思維和培養學生的創造能力培養。初中學生大量地模仿使學生帶來了不利的思維定勢,對高中學生帶來了保守的、僵化的思想,封閉了學生的豐富反對創造精神。如學生在解決:比較a與2a的大小時要不就錯、要不就答不全面。大多數學生不會分類討論。
3、學生自學能力的差異
初中學生自學那能力低,大凡考試中所用的解題方法和數學思想,在初中教師基本上已反復訓練,老師把學生要學生自己高度深刻理解的問題,都集中表現在他的耐心的講解和大量的訓練中,而且學生的聽課只需要熟記結論就可以做題(不全是),學生不需自學。但高中的知識面廣,知識要全部要教師訓練完高考中的習題類型是不可能的,只有通過較少的、較典型的一兩道例題講解去融會貫通這一類型習題,如果不自學、不靠大量的閱讀理解,將會使學生失去一類型習題的解法。另外,科學在不斷的發展,考試在不斷的改革,高考也隨著全面的改革不斷的深入,數學題型的開發在不斷的多樣化,近年來提出了應用型題、探索型題和開放型題,只有靠學生的自學去深刻理解和創新才能適應現代科學的發展。
其實,自學能力的提高也是一個人生活的需要,他從一個方面也代表了一個人的素養,人的一生只有18---24年時間是有導師的學習,其後半生,最精彩的人生是人在一生學習,靠的自學最終達到了自強。
4、思維習慣上的差異
初中學生由於學習數學知識的范圍小,知識層次低,知識面笮,對實際問題的思維受到了局限,就幾何來說,我們都接觸的是現實生活中三維空間,但初中只學了平面幾何,那麼就不能對三維空間進行嚴格的邏輯思維和判斷。代數中數的范圍只限定在實數中思維,就不能深刻的解決方程根的類型等。高中數學知識的多元化和廣泛性,將會使學生全面、細致、深刻、嚴密的分析和解決問題。也將培養學生高素質思維。提高學生的思維遞進性。
5、定量與變數的差異
初中數學中,題目、已知和結論用常數給出的較多,一般地,答案是常數和定量。學生在分析問題時,大多是按定量來分析問題,這樣的思維和問題的解決過程,只能片面地、局限地解決問題,在高中數學學習中我們將會大量地、廣泛地應用代數的可變性去探索問題的普遍性和特殊性。如:求解一元二次方程時我們採用對方程ax2+bx+c=0 (a≠0)的求解,討論它是否有根和有根時的所有根的情形,使學生很快的掌握了對所有一元二次方程的解法。另外,在高中學習中我們還會通過對變數的分析,探索出分析、解決問題的思路和解題所用的數學思想。
三、如何學好高中數學
良好的開端是成功的一半,高中數學課即將開始與初中知識有聯系,但比初中數學知識系統。高一數學中我們將學習函數,函數是高中數學的重點,它在高中數學中是起著提綱的作用,它融匯在整個高中數學知識中,其中有數學中重要的數學思想方法;如:函數與方程思想、數形結合思想等,它也是高考的重點,近年來,高考壓軸題都以函數題為考察方法的。高考題中與函數思想方法有關的習題占整個試題的60%以上。
1、 有良好的學習興趣
兩千多年前孔子說過:「知之者不如好之者,好之者不如樂之者。」意思說,干一件事,知道它,了解它不如愛好它,愛好它不如樂在其中。「好」和「樂」就是願意學,喜歡學,這就是興趣。興趣是最好的老師,有興趣才能產生愛好,愛好它就要去實踐它,達到樂在其中,有興趣才會形成學習的主動性和積極性。在數學學習中,我們把這種從自發的感性的樂趣出發上升為自覺的理性的「認識」過程,這自然會變為立志學好數學,成為數學學習的成功者。那麼如何才能建立好的學習數學興趣呢?
(1)課前預習,對所學知識產生疑問,產生好奇心。
(2)聽課中要配合老師講課,滿足感官的興奮性。聽課中重點解決預習中疑問,把老師課堂的提問、停頓、教具和模型的演示都視為欣賞音樂,及時回答老師課堂提問,培養思考與老師同步性,提高精神,把老師對你的提問的評價,變為鞭策學習的動力。
(3)思考問題注意歸納,挖掘你學習的潛力。
(4)聽課中注意老師講解時的數學思想,多問為什麼要這樣思考,這樣的方法怎樣是產生的?
(5)把概念回歸自然。所有學科都是從實際問題中產生歸納的,數學概念也回歸於現實生活,如角的概念、至交坐標系的產生、極坐標系的產生都是從實際生活中抽象出來的。只有回歸現實才能使對概念的理解切實可靠,在應用概念判斷、推理時會准確。
2、 建立良好的學習數學習慣。
習慣是經過重復練習而鞏固下來的穩重持久的條件反射和自然需要。建立良好的學習數學習慣,會使自己學習感到有序而輕松。高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,並永久記憶在自己的腦海中。另外還要保證每天有一定的自學時間,以便加寬知識面和培養自己再學習能力。
3、 有意識培養自己的各方面能力
數學能力包括:邏輯推理能力、抽象思維能力、計算能力、空間想像能力和分析解決問題能力共五大能力。這些能力是在不同的數學學習環境中得到培養的。在平時學習中要注意開發不同的學習場所,參與一切有益的學習實踐活動,如數學第二課堂、數學競賽、智力競賽等活動。平時注意觀察,比如,空間想像能力是通過實例凈化思維,把空間中的實體高度抽象在大腦中,並在大腦中進行分析推理。其它能力的培養都必須學習、理解、訓練、應用中得到發展。特別是,教師為了培養這些能力,會精心設計「智力課」和「智力問題」比如對習題的解答時的一題多解、舉一反三的訓練歸類,應用模型、電腦等多媒體教學等,都是為數學能力的培養開設的好課型,在這些課型中,學生務必要用全身心投入、全方位智力參與,最終達到自己各方面能力的全面發展。
四、其它注意事項
1、注意化歸轉化思想學習。
人們學習過程就是用掌握的知識去理解、解決未知知識。數學學習過程都是用舊知識引出和解決新問題,當新的知識掌握後再利用它去解決更新知識。初中知識是基礎,如果能把新知識用舊知識解答,你就有了化歸轉化思想了。可見,學習就是不斷地化歸轉化,不斷地繼承和發展更新舊知識。
2、學會數學教材的數學思想方法。
數學教材是採用蘊含披露的方式將數學思想溶於數學知識體系中,因此,適時對數學思想作出歸納、概括是十分必要的。概括數學思想一般可分為兩步進行:一是揭示數學思想內容規律,即將數學對象其具有的屬性或關系抽取出來,二是明確數學思想方法知識的聯系,抽取解決全體的框架。實施這兩步的措施可在課堂的聽講和課外的自學中進行。
課堂學習是數學學習的主戰場。課堂中教師通過講解、分解教材中的數學思想和進行數學技能地訓練,使高中學生學習所得到豐富的數學知識,教師組織的科研活動,使教材中的數學概念、定理、原理得到最大程度的理解、挖掘。如初中學習的相反數概念教學中,教師的課堂教學往往有以下理解:①從定義角度求3、-5的相反數,相反數是 的數是_____.②從數軸角度理解:什麼樣的兩點表示數是互為相反數的。(關於原點對稱的點)③從絕對值角度理解:絕對值_______的兩個數是互為相反數的。④相加為零的兩個數互為相反數嗎?這些不同角度的教學會開闊學生思維,提高思維品質。望同學們把握好課堂這個學習的主戰場。
五、學數學的幾個建議。
1、記數學筆記,特別是對概念理解的不同側面和數學規律,教師為備戰高考而加的課外知識。
2、建立數學糾錯本。把平時容易出現錯誤的知識或推理記載下來,以防再犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對症下葯;解答問題完整、推理嚴密。
3、記憶數學規律和數學小結論。
4、與同學建立好關系,爭做「小老師」,形成數學學習「互助組」。
5、爭做數學課外題,加大自學力度。
6、反復鞏固,消滅前學後忘。
7、學會總結歸類。可:①從數學思想分類②從解題方法歸類③從知識應用上分類
參考資料:
高中數學學習方法談
進入高中以後,往往有不少同學不能適應數學學習,進而影響到學習的積極性,甚至成績一落千丈。出現這樣的情況,原因很多。但主要是由於學生不了解高中數學教學內容特點與自身學習方法有問題等因素所造成的。在此結合高中數學教學內容的特點,談一下高中數學學習方法,供同學參考。
一、 高中數學與初中數學特點的變化
1、數學語言在抽象程度上突變
初、高中的數學語言有著顯著的區別。初中的數學主要是以形象、通俗的語言方式進行表達。而高一數學一下子就觸及非常抽象的集合語言、邏輯運算語言、函數語言、圖象語言等。
2、思維方法向理性層次躍遷
高一學生產生數學學習障礙的另一個原因是高中數學思維方法與初中階段大不相同。初中階段,很多老師為學生將各種題建立了統一的思維模式,如解分式方程分幾步,因式分解先看什麼,再看什麼等。因此,初中學習中習慣於這種機械的,便於操作的定勢方式,而高中數學在思維形式上產生了很大的變化,數學語言的抽象化對思維能力提出了高要求。這種能力要求的突變使很多高一新生感到不適應,故而導致成績下降。

3、知識內容的整體數量劇增
高中數學與初中數學又一個明顯的不同是知識內容的「量」上急劇增加了,單位時間內接受知識信息的量與初中相比增加了許多,輔助練習、消化的課時相應地減少了。
4、知識的獨立性大
初中知識的系統性是較嚴謹的,給我們學習帶來了很大的方便。因為它便於記憶,又適合於知識的提取和使用。但高中的數學卻不同了,它是由幾塊相對獨立的知識拼合而成(如高一有集合,命題、不等式、函數的性質、指數和對數函數、指數和對數方程、三角比、三角函數、數列等),經常是一個知識點剛學得有點入門,馬上又有新的知識出現。因此,注意它們內部的小系統和各系統之間的聯系成了學習時必須花力氣的著力點。
二、如何學好高中數學
1、養成良好的學習數學習慣。
建立良好的學習數學習慣,會使自己學習感到有序而輕松。高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,並永久記憶在自己的腦海中。良好的學習數學習慣包括課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面。
2、及時了解、掌握常用的數學思想和方法
學好高中數學,需要我們從數學思想與方法高度來掌握它。中學數學學習要重點掌握的的數學思想有以上幾個:集合與對應思想,分類討論思想,數形結合思想,運動思想,轉化思想,變換思想。有了數學思想以後,還要掌握具體的方法,比如:換元、待定系數、數學歸納法、分析法、綜合法、反證法等等。在具體的方法中,常用的有:觀察與實驗,聯想與類比,比較與分類,分析與綜合,歸納與演繹,一般與特殊,有限與無限,抽象與概括等。
解數學題時,也要注意解題思維策略問題,經常要思考:選擇什麼角度來進入,應遵循什麼原則性的東西。高中數學中經常用到的數學思維策略有:以簡馭繁、數形結合、進退互用、化生為熟、正難則反、倒順相還、動靜轉換、分合相輔等。
3、逐步形成 「以我為主」的學習模式
數學不是靠老師教會的,而是在老師的引導下,靠自己主動的思維活動去獲取的。學習數學就要積極主動地參與學習過程,養成實事求是的科學態度,獨立思考、勇於探索的創新精神;正確對待學習中的困難和挫折,敗不餒,勝不驕,養成積極進取,不屈不撓,耐挫折的優良心理品質;在學習過程中,要遵循認識規律,善於開動腦筋,積極主動去發現問題,注重新舊知識間的內在聯系,不滿足於現成的思路和結論,經常進行一題多解,一題多變,從多側面、多角度思考問題,挖掘問題的實質。學習數學一定要講究「活」,只看書不做題不行,只埋頭做題不總結積累也不行。對課本知識既要能鑽進去,又要能跳出來,結合自身特點,尋找最佳學習方法。
4、針對自己的學習情況,採取一些具體的措施,記數學筆記,特別是對概念理解的不同側面和數學規律,教師在課堂中拓展的課外知識。記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今後將其補上。 建立數學糾錯本。把平時容易出現錯誤的知識或推理記載下來,以防再
犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對症下葯;解答問題完整、推理嚴密。 熟記一些數學規律和數學小結論,使自己平時的運算技能達到了自動化或半自動化的熟練程度。
經常對知識結構進行梳理,形成板塊結構,實行「整體集裝」,如表格化,使知識結構一目瞭然;經常對習題進行類化,由一例到一類,由一類到多類,由多類到統一;使幾類問題歸納於同一知識方法。閱讀數學課外書籍與報刊,參加數學學科課外活動與講座,多做數學課外題,加大自學力度,拓展自己的知識面。
及時復習,強化對基本概念知識體系的理解與記憶,進行適當的反復鞏固,消滅前學後忘。學會從多角度、多層次地進行總結歸類。如:①從數學思想分類②從解題方法歸類③從知識應用上分類等,使所學的知識系統化、條理化、專題化、網路化。經常在做題後進行一定的「反思」,思考一下本題所用的基礎知識,數學思想方法是什麼,為什麼要這樣想,是否還有別的想法和解法,本題的分析方法與解法,在解其它問題時,是否也用到過。無論是作業還是測驗,都應把准確性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,這是學好數學的重要問題。
對新初三學生來說,學好數學,首先要抱著濃厚的興趣去學習數學,積極展開思維的翅膀,主動地參與教育全過程,充分發揮自己的主觀能動性,愉快有效地學數學。
其次要掌握正確的學習方法。鍛煉自己學數學的能力,轉變學習方式,要改變單純接受的學習方式,要學會採用接受學習與探究學習、合作學習、體驗學習等多樣化的方式進行學習,要在教師的指導下逐步學會「提出問題—實驗探究—開展討論—形成新知—應用反思」的學習方法。這樣,通過學習方式由單一到多樣的轉變,我們在學習活動中的自主性、探索性、合作性就能夠得到加強,成為學習的主人。
在新學期要上好每一節課,數學課有知識的發生和形成的概念課,有解題思路探索和規律總結的習題課,有數學思想方法提煉和聯系實際的復習課。要上好這些課來學會數學知識,掌握學習數學的方法。
概念課
要重視教學過程,要積極體驗知識產生、發展的過程,要把知識的來龍去脈搞清楚,認識知識發生的過程,理解公式、定理、法則的推導過程,改變死記硬背的方法,這樣我們就能從知識形成、發展過程當中,理解到學會它的樂趣;在解決問題的過程中,體會到成功的喜悅。
習題課
要掌握「聽一遍不如看一遍,看一遍不如做一遍,做一遍不如講一遍,講一遍不如辯一辯」的訣竅。除了聽老師講,看老師做以外,要自己多做習題,而且要把自己的體會主動、大膽地講給大家聽,遇到問題要和同學、老師辯一辯,堅持真理,改正錯誤。在聽課時要注意老師展示的解題思維過程,要多思考、多探究、多嘗試,發現創造性的證法及解法,學會「小題大做」和「大題小做」的解題方法,即對選擇題、填空題一類的客觀題要認真對待絕不粗心大意,就像對待大題目一樣,做到下筆如有神;對綜合題這樣的大題目不妨把「大」拆「小」,以「退」為「進」,也就是把一個比較復雜的問題,拆成或退為最簡單、最原始的問題,把這些小題、簡單問題想通、想透,找出規律,然後再來一個飛躍,進一步升華,就能湊成一個大題,即退中求進了。如果有了這種分解、綜合的能力,加上有扎實的基本功還有什麼題目難得倒我們。
復習課
在數學學習過程中,要有一個清醒的復習意識,逐漸養成良好的復習習慣,從而逐步學會學習。數學復習應是一個反思性學習過程。要反思對所學習的知識、技能有沒有達到課程所要求的程度;要反思學習中涉及到了哪些數學思想方法,這些數學思想方法是如何運用的,運用過程中有什麼特點;要反思基本問題(包括基本圖形、圖像等),典型問題有沒有真正弄懂弄通了,平時碰到的問題中有哪些問題可歸結為這些基本問題;要反思自己的錯誤,找出產生錯誤的原因,訂出改正的措施。在新學期大家准備一本數學學習「病例卡」,把平時犯的錯誤記下來,找出「病因」開出「處方」,並且經常拿出來看看、想想錯在哪裡,為什麼會錯,怎麼改正,通過你的努力,到中考時你的數學就沒有什麼「病例」了。並且數學復習應在數學知識的運用過程中進行,通過運用,達到深化理解、發展能力的目的,因此在新的一年要在教師的指導下做一定數量的數學習題,做到舉一反三、熟練應用,避免以「練」代「復」的題海戰術。
最後,要有意識地培養好自己個人的心理素質,全面系統地進行心理訓練,要有決心、信心、恆心,更要有一顆平常心。
除了以上所說,學習的方法與態度,以及考試的心態都是很重要的因素,很多人在考試時總考不出自己的實際水平,拿不到理想的分數,究其原因,就是心理素質不過硬,考試時過於緊張的緣故,還有就是把考試的分數看得太重,所以才會導致考試失利,你要學會換一種方式來考慮問題,你要學會調整自己的心態,人們常說,考試考得三分是水平,七分是心理,過於地追求往往就會失去,就是這個緣故;不要把分數看得太重,即把考試當成一般的作業,理清自己的思路,認真對付每一道題,你就一定會考出好成績的;你要學會超越自我,這句話的意思就是,心裡不要總想著分數、總想著名次;只要我這次考試的成績比我上一次考試的成績有所提高,哪怕是只高一分,那我也是超越了自我;這也就是說,不與別人比成績,就與自己比,這樣你的心態就會平和許多,就會感到沒有那麼大的壓力,學習與考試時就會感到輕松自如的;你試著按照這種方式來調整自己,你就會發現,在不經意中,你的成績就會提高許多;
這就是我的經驗之談,媽媽教給我的道理,使我順利地度過了中學階段,也使我的成績從高一班上的30多名到高三時就進入了年級的前10名,並且沒有感到絲毫的壓力,學得很輕松自如,你不妨也試一試,但願我的經驗能使你的壓力有所減輕、成績有所提高,那我也就感到欣慰了;
最祝你學習進步!