當前位置:首頁 » 基礎信息 » 人工智慧需要什麼基礎
擴展閱讀
同學表演魔術用什麼背景 2024-11-16 10:34:34
什麼樣的圖片能成為經典 2024-11-16 10:34:31
ug軟體怎麼取消掉經典 2024-11-16 10:21:44

人工智慧需要什麼基礎

發布時間: 2022-03-04 05:02:10

❶ 學習Python人工智慧需要什麼基礎

1.高等數學基礎知識
首先,你是零基礎的話,就先將高等數學基礎知識學透,從基礎的數據分析、線性代數及矩陣等等入門,只有基礎有了,才會層層積累,不能沒有邏輯性的看一塊學一塊。
2.有一定的英語水平
試想,如果你連基礎的英語單詞都看不懂,還怎麼寫代碼呢?畢竟代碼都是由英文單片語成的。所以啊,把英文水平提升上來吧,這個非常非常重要的。
3.Python
Python具有豐富和強大的庫。它常被昵稱為膠水語言,能夠把用其他語言製作的各種模塊(尤其是C/C++)很輕松地聯結在一起。比如3D游戲中的圖形渲染模塊,性能要求特別高,就可以用C/C++重寫,而後封裝為Python可以調用的擴展類庫。這也是人工智慧必備知識。
另外,還要提到的一點是:機器學習屬於人工智慧的一個分支,它是讓機器能具備擺脫對人工指令的依賴,能按照一定的演算法開展自主學習的能力,它的出現才真正讓「人工智慧」不枉智能二字。
千鋒的優勢突出:
1、是業內僅有的一家敢推出「兩周免費試聽,不滿意不繳費」的政策,讓學員更真實地了解學校、了解自己是否適合做開發;
2、0學費入學,工作後分期還款,學員畢業能找到好工作;
3、權威資深師資陣容,業內極具責任心、懂教學、擁有超強技術、有大型項目經驗實戰派講師授課,由業內知名專家及企業技術骨幹組成;
4、自主研發QFTS教學系統,擁有自主知識產權的開發培訓課程體系,講練學相結合,課程內容緊貼當前前沿實用技術和企業實際需求;
5、企業級項目實戰訓練,讓學員參與真實的企業級項目研發,然後讓學員畢業後就能獨立設計開發自己的上線項目。

❷ 人工智慧需要什麼基礎

當下,人工智慧成了新時代的必修課,其重要性已無需贅述,但作為一個跨學科產物,它包含的內容浩如煙海,各種復雜的模型和演算法更是讓人望而生畏。對於大多數的新手來說,如何入手人工智慧其實都是一頭霧水,比如到底需要哪些數學基礎、是否要有工程經驗、對於深度學習框架應該關注什麼等等。


那麼,學習人工智慧該從哪裡開始呢?人工智慧的學習路徑又是怎樣的?
本文節選自王天一教授在極客時間 App 開設的「人工智慧基礎課」,已獲授權。更多相關文章,請下載極客時間 App,訂閱專欄獲取。
數學基礎知識蘊含著處理智能問題的基本思想與方法,也是理解復雜演算法的必備要素。今天的種種人工智慧技術歸根到底都建立在數學模型之上,要了解人工智慧,首先要掌握必備的數學基礎知識,具體來說包括:

  • 線性代數:如何將研究對象形式化?

  • 概率論:如何描述統計規律?

  • 數理統計:如何以小見大?

  • 最優化理論: 如何找到最優解?

  • 資訊理論:如何定量度量不確定性?

  • 形式邏輯:如何實現抽象推理?


  • 線性代數:如何將研究對象形式化?
    事實上,線性代數不僅僅是人工智慧的基礎,更是現代數學和以現代數學作為主要分析方法的眾多學科的基礎。從量子力學到圖像處理都離不開向量和矩陣的使用。而在向量和矩陣背後,線性代數的核心意義在於提供了⼀種看待世界的抽象視角:萬事萬物都可以被抽象成某些特徵的組合,並在由預置規則定義的框架之下以靜態和動態的方式加以觀察。
    著重於抽象概念的解釋而非具體的數學公式來看,線性代數要點如下:線性代數的本質在於將具體事物抽象為數學對象,並描述其靜態和動態的特性;向量的實質是 n 維線性空間中的靜止點;線性變換描述了向量或者作為參考系的坐標系的變化,可以用矩陣表示;矩陣的特徵值和特徵向量描述了變化的速度與方向。
    總之,線性代數之於人工智慧如同加法之於高等數學,是一個基礎的工具集。

    概率論:如何描述統計規律?
    除了線性代數之外,概率論也是人工智慧研究中必備的數學基礎。隨著連接主義學派的興起,概率統計已經取代了數理邏輯,成為人工智慧研究的主流工具。在數據爆炸式增長和計算力指數化增強的今天,概率論已經在機器學習中扮演了核心角色。
    同線性代數一樣,概率論也代表了一種看待世界的方式,其關注的焦點是無處不在的可能性。頻率學派認為先驗分布是固定的,模型參數要靠最大似然估計計算;貝葉斯學派認為先驗分布是隨機的,模型參數要靠後驗概率最大化計算;正態分布是最重要的一種隨機變數的分布。

    數理統計:如何以小見大?
    在人工智慧的研究中,數理統計同樣不可或缺。基礎的統計理論有助於對機器學習的演算法和數據挖掘的結果做出解釋,只有做出合理的解讀,數據的價值才能夠體現。數理統計根據觀察或實驗得到的數據來研究隨機現象,並對研究對象的客觀規律做出合理的估計和判斷。
    雖然數理統計以概率論為理論基礎,但兩者之間存在方法上的本質區別。概率論作用的前提是隨機變數的分布已知,根據已知的分布來分析隨機變數的特徵與規律;數理統計的研究對象則是未知分布的隨機變數,研究方法是對隨機變數進行獨立重復的觀察,根據得到的觀察結果對原始分布做出推斷。
    用一句不嚴謹但直觀的話講:數理統計可以看成是逆向的概率論。 數理統計的任務是根據可觀察的樣本反過來推斷總體的性質;推斷的工具是統計量,統計量是樣本的函數,是個隨機變數;參數估計通過隨機抽取的樣本來估計總體分布的未知參數,包括點估計和區間估計;假設檢驗通過隨機抽取的樣本來接受或拒絕關於總體的某個判斷,常用於估計機器學習模型的泛化錯誤率。

    最優化理論: 如何找到最優解?
    本質上講,人工智慧的目標就是最優化:在復雜環境與多體交互中做出最優決策。幾乎所有的人工智慧問題最後都會歸結為一個優化問題的求解,因而最優化理論同樣是人工智慧必備的基礎知識。最優化理論研究的問題是判定給定目標函數的最大值(最小值)是否存在,並找到令目標函數取到最大值 (最小值) 的數值。 如果把給定的目標函數看成一座山脈,最優化的過程就是判斷頂峰的位置並找到到達頂峰路徑的過程。
    通常情況下,最優化問題是在無約束情況下求解給定目標函數的最小值;在線性搜索中,確定尋找最小值時的搜索方向需要使用目標函數的一階導數和二階導數;置信域演算法的思想是先確定搜索步長,再確定搜索方向;以人工神經網路為代表的啟發式演算法是另外一類重要的優化方法。

    資訊理論:如何定量度量不確定性?
    近年來的科學研究不斷證實,不確定性就是客觀世界的本質屬性。換句話說,上帝還真就擲骰子。不確定性的世界只能使用概率模型來描述,這促成了資訊理論的誕生。
    資訊理論使用「信息熵」的概念,對單個信源的信息量和通信中傳遞信息的數量與效率等問題做出了解釋,並在世界的不確定性和信息的可測量性之間搭建起一座橋梁。
    總之,資訊理論處理的是客觀世界中的不確定性;條件熵和信息增益是分類問題中的重要參數;KL 散度用於描述兩個不同概率分布之間的差異;最大熵原理是分類問題匯總的常用准則。

    形式邏輯:如何實現抽象推理?
    1956 年召開的達特茅斯會議宣告了人工智慧的誕生。在人工智慧的襁褓期,各位奠基者們,包括約翰·麥卡錫、赫伯特·西蒙、馬文·閔斯基等未來的圖靈獎得主,他們的願景是讓「具備抽象思考能力的程序解釋合成的物質如何能夠擁有人類的心智。」通俗地說,理想的人工智慧應該具有抽象意義上的學習、推理與歸納能力,其通用性將遠遠強於解決國際象棋或是圍棋等具體問題的演算法。
    如果將認知過程定義為對符號的邏輯運算,人工智慧的基礎就是形式邏輯;謂詞邏輯是知識表示的主要方法;基於謂詞邏輯系統可以實現具有自動推理能力的人工智慧;不完備性定理向「認知的本質是計算」這一人工智慧的基本理念提出挑戰。
    《人工智慧基礎課》全年目錄
    本專欄將圍繞機器學習與神經網路等核心概念展開,並結合當下火熱的深度學習技術,勾勒出人工智慧發展的基本輪廓與主要路徑。點擊我獲取學習資源

    充分了解數據及其特性,有助於我們更有效地選擇機器學習演算法。採用以上步驟在一定程度上可以縮小演算法的選擇范圍,使我們少走些彎路,但在具體選擇哪種演算法方面,一般並不存在最好的演算法或者可以給出最好結果的演算法,在實際做項目的過程中,這個過程往往需要多次嘗試,有時還要嘗試不同演算法。不過先用一種簡單熟悉的方法,然後,在這個基礎上不斷優化,時常能收獲意想不到的效果。

❸ 人工智慧需要什麼基礎

人工智慧需要基礎內容包括認知與神經科學、人工智慧倫理、先進機器人學、人工智慧平台與工具等方面的課程。

❹ 人工智慧需要什麼基礎

人工智慧需要的基礎課程包括

1、數學課:

高等數學、線性代數、概率論與數理統計,復變函數與積分變換、離散數學、最優化、隨機過程。

2、系統與控制課:

信號與系統、反饋控制

3、計算機課:

高級語言程序設計、Python程序設計實踐、數據結構、演算法、嵌入式系統、人工智慧基礎

4、電子課:

電路、模電、數電

❺ 學習人工智慧AI需要哪些知識

需要數學基礎:高等數學,線性代數,概率論數理統計和隨機過程,離散數學,數值分析。數學基礎知識蘊含著處理智能問題的基本思想與方法,也是理解復雜演算法的必備要素。今天的種種人工智慧技術歸根到底都建立在數學模型之上,要了解人工智慧,首先要掌握必備的數學基礎知識。線性代數將研究對象形式化,概率論描述統計規律。

需要演算法的積累:人工神經網路,支持向量機,遺傳演算法等等演算法;當然還有各個領域需要的演算法,比如要讓機器人自己在位置環境導航和建圖就需要研究SLAM;總之演算法很多需要時間的積累。

需要掌握至少一門編程語言,比如C語言,MATLAB之類。畢竟演算法的實現還是要編程的;如果深入到硬體的話,一些電類基礎課必不可少。

拓展資料:

人工智慧(Artificial Intelligence),英文縮寫為AI。它是研究、開發用於模擬、延伸和擴展人的智能的理論、方法、技術及應用系統的一門新的技術科學。

人工智慧是計算機科學的一個分支,它企圖了解智能的實質,並生產出一種新的能以人類智能相似的方式做出反應的智能機器,該領域的研究包括機器人、語言識別、圖像識別、自然語言處理和專家系統等。

人工智慧從誕生以來,理論和技術日益成熟,應用領域也不斷擴大,可以設想,未來人工智慧帶來的科技產品,將會是人類智慧的「容器」。人工智慧可以對人的意識、思維的信息過程的模擬。人工智慧不是人的智能,但能像人那樣思考、也可能超過人的智能。

人工智慧是一門極富挑戰性的科學,從事這項工作的人必須懂得計算機知識,心理學和哲學。人工智慧是包括十分廣泛的科學,它由不同的領域組成,如機器學習,計算機視覺等等,總的說來,人工智慧研究的一個主要目標是使機器能夠勝任一些通常需要人類智能才能完成的復雜工作。但不同的時代、不同的人對這種「復雜工作」的理解是不同的。2017年12月,人工智慧入選「2017年度中國媒體十大流行語」。

參考資料:網路—人工智慧:計算機科學的一個分支

❻ 人工智慧需要什麼基礎

首先,當前學習人工智慧是不錯的選擇,隨著人工智慧技術的不斷發展和應用,整個行業領域會釋放出大量的相關人才需求。學習人工智慧技術通常要根據自身的知識基礎來選擇一個學習切入點,對於初學者來說,可以按照三個階段來學習人工智慧技術,分別是基礎知識階段、人工智慧平台階段和實踐階段。
如果對人工智慧感興趣的話可以選擇專業的職業教育院校進行學習,所有的課程開設都是針對零基礎同學的,學習起來不會有太大壓力。

❼ 學習人工智慧要准備哪些基礎知識

人工智慧的定義可以分為兩部分,即「人工」和「智能」。「人工」比較好理解,爭議性也不大。有時我們會要考慮什麼是人力所能及製造的,或著人自身的智能程度有沒有高到可以創造人工智慧的地步,等等。但總的來說,「人工系統」就是通常意義下的人工系統。

關於什麼是「智能」,就問題多多了。這涉及到其它諸如意識(consciousness)、自我(self)、思維(mind)(包括無意識的思維(unconscious_mind)等等問題。人唯一了解的智能是人本身的智能,這是普遍認同的觀點。但是我們對我們自身智能的理解都非常有限,對構成人的智能的必要元素也了解有限,所以就很難定義什麼是「人工」製造的「智能」了。因此人工智慧的研究往往涉及對人的智能本身的研究。其它關於動物或其它人造系統的智能也普遍被認為是人工智慧相關的研究課題。

人工智慧目前在計算機領域內,得到了愈加廣泛的重視。並在機器人,經濟政治決策,控制系統,模擬系統中得到應用--機器視覺:指紋識別,人臉識別,視網膜識別,虹膜識別,掌紋識別,專家系統等。

人工智慧(Artificial Intelligence)是研究解釋和模擬人類智能、智能行為及其規律的一門學科。其主要任務是建立智能信息處理理論,進而設計可以展現某些近似於人類智能行為的計算系統。AI作為計算機科學的一個重要分支和計算機應用的一個廣闊的新領域,它同原子能技術,空間技術一起被稱為20世紀三大尖端科技。

人工智慧學科研究的主要內容包括:知識表示、自動推理和搜索方法、機器學習和知識獲取、知識處理系統、自然語言理解、計算機視覺、智能機器人、自動程序設計等方面。

知識表示是人工智慧的基本問題之一,推理和搜索都與表示方法密切相關。常用的知識表示方法有:邏輯表示法、產生式表示法、語義網路表示法和框架表示法等。

常識,自然為人們所關注,已提出多種方法,如非單調推理、定性推理就是從不同角度來表達常識和處理常識的。

問題求解中的自動推理是知識的使用過程,由於有多種知識表示方法,相應地有多種推理方法。推理過程一般可分為演繹推理和非演繹推理。謂詞邏輯是演繹推理的基礎。結構化表示下的繼承性能推理是非演繹性的。由於知識處理的需要,近幾年來提出了多種非演澤的推理方法,如連接機制推理、類比推理、基於示例的推理、反繹推理和受限推理等。

搜索是人工智慧的一種問題求解方法,搜索策略決定著問題求解的一個推理步驟中知識被使用的優先關系。可分為無信息導引的盲目搜索和利用經驗知識導引的啟發式搜索。啟發式知識常由啟發式函數來表示,啟發式知識利用得越充分,求解問題的搜索空間就越小。典型的啟發式搜索方法有A*、AO*演算法等。近幾年搜索方法研究開始注意那些具有百萬節點的超大規模的搜索問題。

機器學習是人工智慧的另一重要課題。機器學習是指在一定的知識表示意義下獲取新知識的過程,按照學習機制的不同,主要有歸納學習、分析學習、連接機制學習和遺傳學習等。

知識處理系統主要由知識庫和推理機組成。知識庫存儲系統所需要的知識,當知識量較大而又有多種表示方法時,知識的合理組織與管理是重要的。推理機在問題求解時,規定使用知識的基本方法和策略,推理過程中為記錄結果或通信需設資料庫或採用黑板機制。如果在知識庫中存儲的是某一領域(如醫療診斷)的專家知識,則這樣的知識系統稱為專家系統。為適應復雜問題的求解需要,單一的專家系統向多主體的分布式人工智慧系統發展,這時知識共享、主體間的協作、矛盾的出現和處理將是研究的關鍵問題。

需要數學基礎:高等數學,線性代數,概率論數理統計和隨機過程,離散數學,數值分析。

需要演算法的積累:人工神經網路,支持向量機,遺傳演算法等等演算法;當然還有各個領域需要的演算法,比如要讓機器人自己在位置環境導航和建圖就需要研究SLAM;總之演算法很多需要時間的積累。

需要掌握至少一門編程語言,畢竟演算法的實現還是要編程的;如果深入到硬體的話,一些電類基礎課必不可少。

❽ 人工智慧需要什麼基礎

1、核心三要素——算力、演算法、數據(三大基石):

演算法、算力、數據作為人工智慧(AI)核心三要素,相互影響,相互支撐,在不同行業中形成了不一樣的產業形態。隨著演算法的創新、算力的增強、數據資源的累積,傳統基礎設施將藉此東風實現智能化升級,並有望推動經濟發展全要素的智能化革新。讓人類社會從信息化進入智能化。


(1)算力:



在AI技術當中,算力是演算法和數據的基礎設施,支撐著演算法和數據,進而影響著AI的發展,算力的大小代表著對數據處理能力的強弱。

(2)演算法:

演算法是AI的背後「推手」。



AI演算法是數據驅動型演算法,是AI的推動力量。

(3)數據:

在AI技術當中,數據相當於AI演算法的「飼料」。

機器學習中的監督學習和半監督學習都要用標注好的數據進行訓練,由此催生了大量數據標注公司,它們將處於未經處理的初級數據,轉換為機器可識別信息。只有經過大量的訓練,覆蓋盡可能多的各種場景才能得到一個良好的模型。


2、技術基礎:

(1)文藝復興後的人工神經網路。

人工神經網路是一種仿造神經元運作的函數演算,能接受外界資訊輸入的刺激,且根據不同刺激影響的權重轉換成輸出的反應,或用以改變內部函數的權重結構,以適應不同環境的數學模型。


(2)靠巨量數據運作的機器學習。

科學家發現,要讓機器有智慧,並不一定要真正賦予它思辯能力,可以大量閱讀、儲存資料並具有分辨的能力,就足以幫助人類工作。


(3)人工智慧的重要應用:自然語言處理。

自然語言處理的研究,是要讓機器「理解」人類的語言,是人工智慧領域里的其中一項重要分支。

自然語言處理可先簡單理解分為進、出計算機等兩種:

其一是從人類到電腦──讓電腦把人類的語言轉換成程式可以處理的型式;

其二是從電腦回饋到人──把電腦所演算的成果轉換成人類可以理解的語言表達出來。

❾ 人工智慧需要什麼基礎

1人工智慧需要什麼基礎
首先你需要數學基礎:
高等數學,線性代數,概率論數理統計和隨機過程,離散數學,數值分析

其次需要演算法的積累:人工神經網路,支持向量機,遺傳演算法等等演算法;
當然還有各個領域需要的演算法,比如你要讓機器人自己在位置環境導航和建圖就需要研究SLAM;總之演算法很多需要時間的積累;

然後,需要掌握至少一門編程語言,畢竟演算法的實現還是要編程的;如果深入到硬體的話,一些電類基礎課必不可少;

人工智慧一般要到研究生才會去學,本科也就是蜻蜓點水看看而已,畢竟需要的基礎課過於龐大。

2人工智慧專業課程
從課程體系結構來看,主要分成四大部分:

第一部分是基礎學科部分,主要涉及到數學和物理相關課程;

第二部分是計算機基礎課程,涉及到編程語言、操作系統、演算法設計等課程;

第三部分是人工智慧基礎課程,涉及到人工智慧基礎、機器學習、控制學基礎、神經科學、語言學基礎等內容;

第四部分涉及到人工智慧平台相關知識。

3人工智慧就業情況
人工智慧專業可從事的崗位有:分析類,分析工程師、演算法工程師;研發類,架構工程師、開發工程師、運維工程師;管理類,產品經理、運營經理。

目前國內人工智慧相關崗位的應屆畢業生的起薪基本都在10k—20k之間,畢業三年後人工智慧崗位的技術人員,平均月薪在25k以上,基本實現薪酬翻番,薪資水平、就業滿意度都優於全國平均水平的專業。

❿ 人工智慧需要什麼基礎

人工智慧技術目前有六大主要研究方向,其中計算機視覺、自然語言處理、機器人學和機器學習這幾個方向的熱度比較高,相關領域正在有越來越多的產品開始落地應用,比如目前大型互聯網(科技)公司推出的人工智慧平台,多以視覺和語言處理為基礎進行打造。對於初學者來說,從機器學習開始學起則是不錯的選擇。
機器學習本身的定義可以理解為從一堆雜亂無章的數據中找到一定的規律並予以應用,所以機器學習也是目前大數據分析的兩種主要方式之一。學習機器學習需要有兩方面基礎,其一是數學基礎(線性代數、概率論),其二是編程語言基礎,目前Python語言在機器學習領域的應用比較廣泛。初期學習機器學習知識並不會遇到非常復雜的數學知識,所以即使數學基礎比較薄弱,也可以學習。
機器學習的步驟涉及到數據收集、演算法設計、演算法實現、演算法訓練、演算法驗證和演算法應用,所以機器學習的基礎是數據,而核心則是演算法設計,因此要想在機器學習領域走得更遠,一定要重視數學相關知識的學習。實際上,人工智慧領域的研發對於數學的要求還是比較高的,但是在人工智慧平台落地之後,基於人工智慧平台進行的應用級開發(行業創新)對於數學的要求會大幅降低。