㈠ 物理九大基本學科
力學
聲學
熱學
分子物理學
電磁學
光學
原子物理學
原子核物理學
固體物理學
物理學是研究物質的結構、相互作用和運動規律以及它們的各種實際應用的科學.它是自然科學的基礎,是近代科學技術的主要源泉.
物理學是一門基礎學科.在物理學研究過程中形成和發展起來的基本概念、基本理論、基本實驗手段和精密測量方法,不但成為其它學科諸如天文學、化學、生物學、地學、醫學、農業科學和計量學等學科的組成部分,還推動了這些學科的發展.物理學還與其它學科相互滲透,產生了一系列交叉學科,如化學物理、生物物理、大氣物理、海洋物理、地球物理、天體物理等.
物理學也是各種技術學科和工程學科的共同基礎.在近代物理發展的基礎上,產生了許多新的技術學科,如核能與其它能源技術,半導體電子技術,材料科學等,從而有力的促進了生產技術的發展和變革.19世紀以來,人類歷史上的四次產業革命和工業革命都是以對物理某些領域的基本規律認識的突破為前提的.當代,物理學科研究的突破不斷導致各種高新技術的產生和發展,從而在近代物理學與許多高科技學科之間形成一片相互交疊的基礎性研究與應用性研究相結合的寬廣領域.物理學科與技術學科各自根據自身的特點,從不同的角度對這些領域的研究,既促進了物理學的發展和應用,又促進了高科技的發展和改斗運提高.
通常根據研究的物質運動形態和具體對象不同,物理學可主要分為如下幾個二級學科:理論物理、粒子物理與原子核物理、原子與分子物理、凝聚態物理、等離子體物理、聲學、光學以及無線電物理,本專業的主要涉及光學、凝聚態物理和理論物理三個二級學科十學科方向.
主要研究方向及其內容:
1.光信息存儲與顯示(光學)
X射線影像存儲材料和電子俘獲光存儲材料的制備、性能、存儲機理及其應用的研究;有機、無機電致發光材料的制備、傳輸機制、激發態過程的機理及其顯示器件的研究.
2.光電子材料與器件物理(光學)
研究稀土發光、半導體發光、陰極射線發光、高能射線發光、上轉換發光、長余輝發光、白光LED照明、無汞熒光燈、光學薄膜基本設計、超聲、光銷虧存儲、有機發光、載流子傳輸材料、有機光致發光和電致發光材料等的制備;研究光致發光和電致發光機理、載流子傳輸機制等;研究發光二極體、無機有機薄膜電致發光器件、厚膜交/直流驅動軟屏、電子油墨(或電子紙)、光電探測器等光電子器件;研究這些材料和器件的新技術和新工藝以及它們的應用.
3.激光與光電檢測技術(光學)
主要研究各種激光與光電檢測方法、技術及其應用,包括激光干涉測量技術、光電感測技術、激光超聲技術、激光多普勒振動檢測技術、紅外檢測技術、激光掃描測量技術及微納米測量技術等.此外常規的無損檢測手段中光電技術的使用也是本領域的研究內容之一.
4.光信息傳輸與光信號處理(光學)
研究光在各種光纖和各種光波導中的傳輸特性,以及由它們構成的光纖通信系統與光纖感測系統.包括導波光學、非線性光纖光學、光纖通信系統;以及利用光纖構成的感測系統,比如電壓、電流、氣體等感測器和智能蒙皮、分布感測系統、生物光纖感測器等.並涉及到全光網路、全光信號處理等方面的研究課題.
5.光物理(光學)
本研究方向在激光與原子、分子、團簇及凝聚態物質的相互作用、光學超快現象、光與生物體相互作用和THZ光的理論和應用等前沿課題上開展深入系統的研究.研究領域涉及激光與物質的相互作用及其用於激光探測等基礎研究和應用基礎研究,希望在非線性光學、激光與原子分子相互作用、OCT、超快光物理、有機聚合物的光子學和THz物理等研究方面取得突破性的進展,開拓和發展若干新的研究方向,為國家經濟建設服務.
6.稀土物理(凝聚態物理)
本方向研究凝聚態物質中稀土離子的能級和激發態過程.當前研究的主要方向是稀土離子高能激發態的結構,輻射躍遷,無輻射躍遷,電子--聲子偶合,組合混雜,真空紫外激發的稀土發光材料中的物理問題.
7.納米結構與低維物理(凝聚態物理)
低維體系是研究小空間尺度的新的物理效應,已成為凝聚態物理最活躍和最富有生命力的重要前言領域之一,它與物理、化學、生物、醫葯學、材料、電子學、光電子學、磁學、能源和環境等多學科交叉,該體系的能帶可人工剪裁性、表面界面效應、量子尺寸效應、隧穿效應等賦予它許多原來三維固體不具備的、內涵豐富而深刻的新現象、新核梁效應、新規律,並廣泛地被用來開發具有新原理、新結構的固態電子、光電子器件.
8.固體發光(凝聚態物理)
固體發光是固體光學的一個重要組成部分,它是物體將吸收的能量轉化為光輻射的過程.它主要包括:光致發光、陰極射線發光、高能射線發光、電致發光和生物發光等.固體發光有很多重要的應用,例如:照明光源、陰極射線等各種發光顯示器、高密度光存儲材料、核輻射探測等.近年來固體光學又有很多新的發展,諸如有機電致發光、多孔硅、低維體系、量子剪裁等.本研究方向瞄準學科前沿,主要開展了無機及有機電致發光材料及機理、發光存儲材料及機理、上轉換材料及機理等諸多有特色的研究工作.
9.數學物理與計算物理(理論物理)
數學物理學是以研究物理問題為目標的數學理論和數學方法.它探討物理現象的數學模型,即尋求物理現象的數學描述和詮釋和.從二十世紀開始,由於物理學內容的更新,數學物理也有了新的面貌.伴隨著對電磁理論,量子理論和引力場的深入研究,人們的時空觀念發生了根本的變化,數學物理成為研究物理現象的有力工具.隨著電子計算機的發展,數學物理中的許多問題可以通過數值計算來解決,由此發展起來的計算物理都發揮著越來越大的作用.計算機直接模擬物理模型也成為重要的方法.本研究方向主要研究廣義相對論和宇宙學,數學物理的幾何結構,大型物理體系的數值計算和並行演算法等.
10.凝聚態理論(理論物理)
理論物理的一個重要分支是凝聚態物理中的量子多體理論,它是應用現代多體理論和量子場論研究凝聚態物理中的新現象、揭示新現象中的物理本質.當前研究的主要方向:計算凝聚態物理,強關聯電子系統和介觀體系中的物理問題,低維量子系統中的電聲相互作用,凝聚物質中的量子輸運理論,以及非費米液體、自旋輸運和Mott相變等.