① 線性代數的基礎解系怎麼求
另一種求解方法:
X1為獨立未知量: 它對應獨立方程、對應系數矩陣的秩r(A)。【全0行】表示自由未知量: 它對應非獨立方程、對應基礎解系的秩R。【全0行】寫成 Xⅰ=Ⅹⅰ 形式,本題即 X2=X2,X3=X3,它們構成解空間的基 ( 基礎解系秩R=2 );且有 r(A)+R=n ( 總未知量 )。
② 這里2個基礎解系是怎麼設的怎麼得出來的!
秩是2,所以基礎解系裡只有一個向量,把x123關系寫出來往進代
③ 線性代數基礎解系的詳細求法
就以齊次方程組為例:
假如是3階矩陣
r(A)=1
矩陣變換之後不就是只剩一個方程了嗎?
這時候,你可以設x3為1,x2為0,得出x1
然後設x3為0,x2為1,得出x1
你可能會疑惑為什麼要這么設,憑什麼這么設,原因很簡單,
因為只要(0,1)和(1,0)肯定無關,所以所得解就無關,而這個方程基礎解系的個數為n-r(A)=2個
如果r(A)=2的話,就剩下來兩個方程了,一般都設x3=1,原因就是因為這樣計算簡便,沒別的原因
④ 基礎解系怎麼求麻煩帶步驟~ 謝謝
1 2 3 4 1 0 -1 -2
0 1 2 3 第一行+(-2)倍第二行 0 1 2 3
0 0 0 0 ______________________-→ 0 0 0 0
0 0 0 0 0 0 0 0
則 X1=-X3+(-2)X4
X2=2X3+3X4
X3=C1
X4=C2
則基礎解析為
X1 -1 -2
X2===2 C1 + 3 C2
X3 1 0
X4 0 1
(4)基礎解系怎麼設擴展閱讀
基礎解系和通解的關系
對於一個方程組,有無窮多組的解來說,最基礎的,不用乘系數的那組方程的解,如(1,2,3)和(2,4,6)及(3,6,9)以及(4,8,12)......等均符合方程的解,則系數K為1,2,3,4.....等,因此(1,2,3)就為方程組的基礎解系。
A是n階實對稱矩陣,
假如r(A)=1.則它的特徵值為t1=a11+a22+...+ann,t2=t3=...tn=0;對應於t1的特徵向量為b1,t2~tn的分別為b2~bn
此時,Ax=0的解就是k2b2+k3b3+...+knbn;其中ki不全為零。由於:Ax=0Ax=0*B,B為A的特徵向量,對應一個特徵值的特徵向量寫成通解的形式是乘上ki並加到一起。這是基礎解系和通解的關系。
基礎解系是線性無關的,簡單的理解就是能夠用它的線性組合表示出該方程組的任意一組解,是針對有無數多組解的方程而言的。基礎解系不是唯一的,因個人計算時對自由未知量的取法而異,但不同的基礎解系之間必定對應著某種線性關系。
基礎解系是針對有無數多組解的方程而言,若是齊次線性方程組則應是有效方程的個數少於未知數的個數,若非齊次則應是系數矩陣的秩等於增廣矩陣的秩,且都小於未知數的個數。
⑤ 線性代數 這基礎解系怎麼求出來啊
設x=(a,b,c)
則2a+5b=0
取a為任意一個非0數得到a=1, b=-0.4
再帶入方程a-2b-c=0得到c
這樣就可以得到一個解(a,b,c),基礎解系就出來了
⑥ 這個基礎解系怎麼求
把系數矩陣化為行最簡矩陣。∵行最簡矩陣的非0行=1,∴系數矩陣秩 r(A)=1,即獨立未知量1個。解空間的基向量2個: R= n-r(A)=3-1=2,即自由未知量2個,或說基礎解系的秩R=2。下面方法易看懂。
自由未知量寫成 Ⅹⅰ=Xⅰ 形式,本題即 Ⅹ2=Ⅹ2,X3=Ⅹ3。先寫代數解再寫向量解,不易出錯。
⑦ 線性代數的基礎解系是什麼,該怎樣求啊
基礎解系:齊次線性方程組的解集的極大線性無關組稱為該齊次線性方程組的基礎解系。
1、對系數矩陣A進行初等行變換,將其化為行階梯形矩陣;
2、若r(A)=r=n(未知量的個數),則原方程組僅有零解,即x=0,求解結束;
若r(A)=r<n(未知量的個數),則原方程組有非零解,進行以下步驟:
3、繼續將系數矩陣A化為行最簡形矩陣,並寫出同解方程組;
4、選取合適的自由未知量,並取相應的基本向量組,代入同解方程組,得到原方程組的基礎解系
(7)基礎解系怎麼設擴展閱讀:
基礎解系的性質:
基礎解系是線性無關的,簡單的理解就是能夠用它的線性組合表示出該方程組的任意一組解,是針對有無數多組解的方程而言的。基礎解系不是唯一的,因個人計算時對自由未知量的取法而異,但不同的基礎解系之間必定對應著某種線性關系。
基礎解系是針對有無數多組解的方程而言,若是齊次線性方程組則應是有效方程的個數少於未知數的個數,若非齊次則應是系數矩陣的秩等於增廣矩陣的秩,且都小於未知數的個數。
⑧ 怎麼求基礎解系
第一步,先把系數矩陣A化為行最簡形
第二步,寫出行最簡形對應的齊次方程,以每一行第一個1對應的分量為未知數求解
如A的行最簡形為
1 0 2 1
0 1 1 -3
0 0 0 0
則行最簡形對應的齊次方程可簡單的寫成:
x1 +2x3 +x4=0
x2 +x3 -3x4=0
分別取x3=1,x4=0和x3=0,x4=1代入
可以求得兩個解向量,就構成了基礎解析