『壹』 有關數學的小常識
1.關於數學的小知識
楊輝三角是一個由數字排列成的三角形數表,一般形式如下:
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
… … … … …
楊輝三角最本質的特徵是,它的兩條斜邊都是由數字1組成的,而其餘的數則是等於它肩上的兩個數之和。其實,中國古代數學家在數學的許多重要領域中處於遙遙領先的地位。中國古代數學史曾經有自己光輝燦爛的篇章,而楊輝三角的發現就是十分精彩的一頁。楊輝,字謙光,北宋時期杭州人。在他1261年所著的《詳解九章演算法》一書中山碧,輯錄了如上所示的三角形數改賣表,稱之為「開方作法本源」圖。而這樣一個三角在我們的奧數競賽中也是經常用到,最簡單的就是叫你找規律。現在要求我們用編程的方法輸出這樣的數表。
同時 這也是多項式(a+b)^n 打開括弧後的各個項的二次項系數的規律 即為
0 (a+b)^0 (0 nCr 0)
1 (a+b)^1 (1 nCr 0) (1 nCr 1)
2 (a+b)^2 (2 nCr 0) (2 nCr 1) (2 nCr 2)
3 (a+b)^3 (3 nCr 0) (3 nCr 1) (3 nCr 2) (3 nCr 3)
. 。 。 。 。 。
因此 楊輝三角第x層第y項直接就是 (y nCr x)
我們也不難得到 第x層的所有項的總和 為 2^x (即(a+b)^x中a,b都為1的時候)
[ 上述y^x 指 y的 x次方;(a nCr b) 指 組合數]
其實,中國古代數學家在數學的許多重要領域中處於遙遙領先的地位。中國古代數學史曾經有自己光輝燦爛的篇章,而楊輝三角的發現就是十分精彩的一頁。
楊輝,字謙光,北宋時期杭州人。在他1261年所著的《詳解九章演算法》一書中,輯錄了如上所示的三角形數表,稱之為「開方作法本源」圖。
而這樣一個三角在我們的奧數競賽中也是經常逗殲舉用到,最簡單的就是叫你找規律。具體的用法我們會在教學內容中講授。
在國外,這也叫做"帕斯卡三角形".
2.關於數學的小知識
1,零 在很早的時候,以為「1」是「數字字元表」的開始,並且它進一步引出了2,3,4,5等其他數字。
這些數字的作用是,對那些真實存在的物體,如蘋果、香蕉、梨等進行計數。直到後來,才學會,當盒子里邊已經沒有蘋果時,如何計數里邊的蘋果數。
2,數字系統 數字系統是一種處理「多少」的方法。不同的文化在不同的時代採用了各種不同的方法,從基本的「1,2,3,很多」延伸到今天所使用的高度復雜的十進製表示方法。
3,π π是數學中最著名的數。忘記自然界中的所有其他常數也不會忘記它,π總是出現在名單中的第一個位置。
如果數字也有奧斯卡獎,那麼π肯定每年都會得獎。 π或者pi,是圓周的周長和它的直徑的比值。
它的值,即這兩個長度之間的比值,不取決於圓周的大小。無論圓周是大是小,π的值都是恆定不變的。
π產生於圓周,但是在數學中它卻無處不在,甚至涉及那些和圓周毫不相關的地方。 4,代數 代數給了一種嶄新的解決間題的方式,一種「迴旋」的演年方法。
這種「迴旋」是「反向思維」的。讓我們考慮一下這個問題,當給數字25加上17時,結果將是42。
這是正向思維。這些數,需要做的只是把它們加起來。
但是,假如已經知道了答案42,並提出一個不同的問題,即現在想要知道的是什麼數和25相加得42。這里便需要用到反向思維。
想要知道未知數x的值,它滿足等式25+x=42,然後,只需將42減去25便可知道答案。 5,函數 萊昂哈德·歐拉是瑞士數學家和物理學家。
歐拉是第一個使用「函數」一詞來描述包含各種參數的表達式的人,例如:y = F(x),他是把微積分應用於物理學的先驅者之一。
3.【生活中有哪些數學知識,請列舉,字要多一點】
在我們生活的周圍有很多的數學問題,這些數學問題貫穿於生活的方方面面,現實生活中,數學游戲有很多,比方說小朋友在打撲克時快算二十四、數學填框游戲,就連趙本山的小品中也有很多這樣的數學游戲.如「樹上七個猴,地上一個猴,一共幾個猴.」等等生活中的例子.這些游戲構成了我們生活中五彩繽紛的畫卷.我們每天早上一起來,首先是對一天的事情進行一下比較簡單的計劃,一天中要干哪些事情,需要什麼時間完成,這一天的預算支出、收入各多少;有了一個初步的打算以後,開始對一天的工作進行實施;一天的工作進行中伴隨著各種各樣的計算、預算即數學.一天的工作結束後,接下來的是對這一天進行的小結,小結是通過一個一個的數學運算進行的,運算的結果是一個個比較直觀的數字.我們現實生活中,購物、估算、計算時間、確定位置和買賣股票等等都與數學有關.可以說,數學在人們的生活中是無處不在的,數學是日常生活中必不可少的工具.無論人們從事什麼職業,都不同程度地會用到數學的知識與技能以及數學的思考方法.特別是隨著計算機的普及與發展,這種需要更是與日俱增.無論是我們日常生活中的天氣預報、儲蓄、市場調查與預測,還是基因圖譜的分析、工程設計、信息編碼、質量監測等等,都離不開數學的支持.而且,數學是和語言一樣的一種工具,具有國際通用性.可以說,自然界中的數學不勝枚舉,如蜜蜂營造的蜂房,它的表面就是由奇妙的數學圖形——正六邊形構成的,這種蜂房消耗最少的材料和時間;城市裡的下水道蓋都有是圓形的,你知道這是為什麼嗎?人行道上,常見到這樣的圖案,它們分別是同樣大小的正方形或正六邊形的地磚鋪成的,這樣形狀的地磚能鋪成平整無孔隙的地面.這裡面竟有一個節約的數學道理在裡面呢?再比如,100戶人家要安裝電話,事實上並不需要100條電話線路,只要允許有一些時間占線,就能大大節約安裝成本,這正體現了數理統計的作用.因此,生活與數學是分不開的,生活中有數學,數學是生活的縮影.在一年要結束的時候,商人在談論中說我這一年的收入是多少,與去年相比怎麼樣;農民也在談論這一年中收入多少糧食;工人也在談論在這一年的收入與支出是否相當,有多少存款;軍人談論這一年中訓練成績如何,提高了多少成績;而學生的學習成績則是對一位教師一年來辛苦工作的衡量標准;單位也在做這樣那樣的總結.一年的結束是這樣的,下一年的開始同樣也要有一個預算;一天、一個月、一個季度、一個階段人們都在做同樣的事情;一個人、一個家庭、一個單位、一個組織、一個國家等等,都在用數學的方法對他們在不同時間、地點、空間、人員、事務等等上做一定的運算後,得出一個直觀的數字標示量,作為一個目標、結論、預算、程度等等.總之,生活中的數學可以說是無處不在,數學嚴重影響著我們的生活,是生活中的重要條件.因此,我們不可忽視生活中的數學,要重視它並最大限度地開發、利用它.。
4.數學小知識
1.、王菊珍的百分數
我國科學家王菊珍對待實驗失敗有句格言,叫做「幹下去還有50%成功的希望,不幹便是100%的失敗。」
2、托爾斯泰的分數
俄國大文豪托爾斯泰在談到人的評價時,把人比作一個分數。他說:「一個人就好像一個分數,他的實際才能好比分子,而他對自己的估價好比分母。分母越大,則分數的值就越小。」
1、數學的本質在於它的自由. 康扥爾(Cantor)
2、在數學的領域中, 提出問題的藝術比解答問題的藝術更為重要. 康扥爾(Cantor)
3、沒有任何問題可以向無窮那樣深深的觸動人的情感, 很少有別的觀念能像無窮那樣激勵理智產生富有成果的思想, 然而也沒有任何其他的概念能向無窮那樣需要加以闡明. 希爾伯特(Hilbert)
4、數學是無窮的科學. 赫爾曼外爾
5、問題是數學的心臟. P.R.Halmos
6、只要一門科學分支能提出大量的問題, 它就充滿著生命力, 而問題缺乏則預示著獨立發展的終止或衰 亡. Hilbert
7、數學中的一些美麗定理具有這樣的特性: 它們極易從事實中歸納出來, 但證明卻隱藏的極深. 高斯
3、雷巴柯夫的常數與變數
俄國歷史學家雷巴柯夫在利用時間方面是這樣說的:「時間是個常數,但對勤奮者來說,是個『變數』。用『分』來計算時間的人比用『小時』來計算時間的人時間多59倍。」
二、用符號寫格言
4、華羅庚的減號
我國著名數學家華羅庚在談到學習與探索時指出:「在學習中要敢於做減法,就是減去前人已經解決的部分,看看還有那些問題沒有解決,需要我們去探索解決。」
5、愛迪生的加號
大發明家愛迪生在談天才時用一個加號來描述,他說:「天才=1%的靈感+99%的血汗。」
6、季米特洛夫的正負號
著名的國際工人運動活動家季米特洛夫在評價一天的工作時說:「要利用時間,思考一下一天之中做了些什麼,是『正號』還是『負號』,倘若是『+』,則進步;倘若是『-』,就得吸取教訓,採取措施。」
三、用公式寫的格言
7、愛因斯坦的公式
近代最偉大的科學家愛因斯坦在談成功的秘訣時,寫下一個公式:A=x+y+z。並解釋道:A代表成功,x代表艱苦的勞動,y代表正確的方法,Z代表少說空話。」
5.有關數學的小知識
對於那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬於基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養成良好習慣的時期,注重培養孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?
一、重視課內聽講,課後及時進行復習.
新知識的接受和數學能力的培養主要是在課堂上進行的,所以我們必須特別注意課堂學習的效率,尋找正確的學習方法.在課堂上,我們必須遵循教師的思想,積極制定以下步驟,思考和預測解決問題的思想與教師之間的差異.特別是,我們必須了解基本知識和基本學習技能,並及時審查它們以避免疑慮.首先,在進行各種練習之前,我們必須記住教師的知識點,正確理解各種公式的推理過程,並試著記住而不是採用"不確定的書籍閱讀".勤於思考,對於一些問題試著用大腦去思考,認真分析問題,嘗試自己解決問題.
二、多做習題,養成解決問題的好習慣.
如果你想學好數學,你需要提出更多問題,熟悉各種問題的解決問題的想法.首先,我們先從課本的題目為標准,反復練習基本知識,然後找一些課外活動,幫助開拓思路練習,提高自己的分析和掌握解決的規律.對於一些易於查找的問題,您可以准備一個用於收集的錯題本,編寫自己的想法來解決問題,在日常養成解決問題的好習慣.學會讓自己高度集中精力,使大腦興奮,快速思考,進入最佳狀態並在考試中自由使用.
三、調整心態並正確對待考試.
首先,主要的重點應放在基礎、基本技能、基本方法,因為大多數測試出於基本問題,較難的題目也是出自於基本.所以只有調整學習的心態,盡量讓自己用一個清楚的頭腦去解決問題,就沒有太難的題目.考試前要多對習題進行演練,開闊思路,在保證真確的前提下提高做題的速度.對於簡單的基礎題目要拿出二十分的把握去做;難得題目要盡量去做對,使自己的水平能正常或者超常發揮.
由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態,不能見考試就膽怯,調整心態很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.
6.數學小知識
1.、王菊珍的百分數 我國科學家王菊珍對待實驗失敗有句格言,叫做「幹下去還有50%成功的希望,不幹便是100%的失敗。」
2、托爾斯泰的分數 俄國大文豪托爾斯泰在談到人的評價時,把人比作一個分數。他說:「一個人就好像一個分數,他的實際才能好比分子,而他對自己的估價好比分母。
分母越大,則分數的值就越小。」 1、數學的本質在於它的自由. 康扥爾(Cantor) 2、在數學的領域中, 提出問題的藝術比解答問題的藝術更為重要. 康扥爾(Cantor) 3、沒有任何問題可以向無窮那樣深深的觸動人的情感, 很少有別的觀念能像無窮那樣激勵理智產生富有成果的思想, 然而也沒有任何其他的概念能向無窮那樣需要加以闡明. 希爾伯特(Hilbert) 4、數學是無窮的科學. 赫爾曼外爾 5、問題是數學的心臟. P.R.Halmos 6、只要一門科學分支能提出大量的問題, 它就充滿著生命力, 而問題缺乏則預示著獨立發展的終止或衰 亡. Hilbert 7、數學中的一些美麗定理具有這樣的特性: 它們極易從事實中歸納出來, 但證明卻隱藏的極深. 高斯 3、雷巴柯夫的常數與變數 俄國歷史學家雷巴柯夫在利用時間方面是這樣說的:「時間是個常數,但對勤奮者來說,是個『變數』。
用『分』來計算時間的人比用『小時』來計算時間的人時間多59倍。」 二、用符號寫格言 4、華羅庚的減號 我國著名數學家華羅庚在談到學習與探索時指出:「在學習中要敢於做減法,就是減去前人已經解決的部分,看看還有那些問題沒有解決,需要我們去探索解決。」
5、愛迪生的加號 大發明家愛迪生在談天才時用一個加號來描述,他說:「天才=1%的靈感+99%的血汗。」 6、季米特洛夫的正負號 著名的國際工人運動活動家季米特洛夫在評價一天的工作時說:「要利用時間,思考一下一天之中做了些什麼,是『正號』還是『負號』,倘若是『+』,則進步;倘若是『-』,就得吸取教訓,採取措施。」
三、用公式寫的格言 7、愛因斯坦的公式 近代最偉大的科學家愛因斯坦在談成功的秘訣時,寫下一個公式:A=x+y+z。並解釋道:A代表成功,x代表艱苦的勞動,y代表正確的方法,Z代表少說空話。」
7.求數學趣味小知識
◆「0」
羅馬數字沒有0;
五世紀時,「0」從東方傳到羅馬,當時教皇非常保守,認為羅馬數字可以用來記任何數目,已足夠用,就禁止用「0」,一位羅馬學者的手冊介紹了0和0的一些用法,教皇發現後,對它施以酷刑。
◆以「規」、「矩」度天下之方圓
山東省嘉祥縣一座古建築石室造像中,有兩位古代神化中我們遠古祖先的形象,一位是伏羲,一位是女媧。伏羲手中物體就是規,與圓規相似;女媧手中物體叫矩,呈直角拐尺形。
有兩個供你選擇~
『貳』 一年級數學知識點
數學作為一門基礎學科,其目的是為了培養學生的 理性思維 ,養成嚴謹的思考的習慣,對一個人的以後工作起到至關重要的作用,特別是在信息時代,可以說,數學與任何科學領域都是緊密結合起來的。
一年級數學 知識點
第一單元
准備課
1、數一數
數數:數數時,按一定的順序數,從1開始,數到最後一個物體所對應的那個數,即最後數到幾,就是這種物體的總個數。
2、比多少
同樣多:當兩種物體一一對應後,都沒有剩餘時,就說這兩種物體的數量同樣多。
比多少:當兩種物體一一對應後,其中一種物體有剩餘,有剩餘的那種物體多,沒有剩餘的那種物體少。
比較兩種物體的多或少時,可以用一一對應的 方法 。
第二單元
位置
1、認識上、下
體會上、下的含義:從兩個物體的位置理解:上是指在高處的物體,下是指在低處的物體。
2、認識前、後
體會前、後的含義:一般指面對的方向就是前,背對的方向就是後。
同一物體,相對於不同的參照物,前後位置關系也會發生變化。
從而得出:確定兩個以上物體的前後位置關系時,要找准參照物,選擇的參照物不同,相對的前後位置關系也會發生變化。
3、認識左、右
以自己的左手、右手所在的位置為標准,確定左邊和右邊。右手所在的一邊為右邊,左手所在的一邊為左邊。
要點提示:在確定左右時,除特殊要求,一般以觀察者的左右為准。
第三單元
1-5的認識和加減法
一、1--5的認識
1、1—5各數的含義:每個數都可以表示不同物體的數量。有幾個物體就用幾來表示。
2、1—5各數的數序
從前往後數:1、2、3、4、5.
從後往前數:5、4、3、2、1.
3、1—5各數的寫法:根據每個數字的形狀,按數字在田字格中的位置,認真、工整地進行書寫。
二、比大小
1、前面的數等於後面的數,用「=」表示,即3=3,讀作3等於3。前面的數大於後面的數,用「>」表示,即3>2,讀作3大於2。前面的數小於後面的數,用「<」表示,即3<4,讀作3小於4。
2、填「>」或「<」時,開口對大數,尖角對小數。
三、第幾
1、確定物體的排列順序時,先確定數數的方向,然後從1開始點數,數到幾,它的順序就是「第幾」。第幾指的是其中的某一個。
2、區分「幾個」和「第幾」
「幾個」表示物體的多少,而「第幾」只表示其中的一個物體。
四、分與合
數的組成:一個數(1除外)分成幾和幾,先把這個數分成1和幾,依次分到幾和1為止。例如:5的組成有1和4,2和3,3和2,4和1.
把一個數分成幾和幾時,要有序地進行分解,防止重復或遺漏。
五、加法
1、加法的含義:把兩部分合在一起,求一共有多少,用加法計算。
2、加法的計算方法:計算5以內數的加法,可以採用點數、接著數、數的組成等方法。其中用數的組成計算是最常用的方法。
六、減法
1、減法的含義:從總數里去掉(減掉)一部分,求還剩多少用減法計算。
2、減法的計算方法:計算減法時,可以用倒著數、數的分成、想加算減的方法來計算。
七、0
1、0的意義:0表示一個物體也沒有,也表示起點。
2、0的讀法:0讀作:零
3、0的寫法:寫0時,要從上到下,從左到右,起筆處和收筆處要相連,並且要寫圓滑,不能有稜角。
4、0的加、減法:任何數與0相加都得這個數,任何數與0相減都得這個數,相同的兩個數相減等於0.
如:0+8=89-0=94-4=0
第四單元
認識圖形
1、長方體的特徵:長長方方的,有6個平平的面,面有大有小。
如圖:
2、正方體的特徵:四四方方的,有6個平平的面,面的大小一樣。
如圖:
3、圓柱的特徵:直直的,上下一樣粗,上下兩個圓面大小一樣。放在桌子上能滾動。立在桌子上不能滾動。
如圖:
4、球的特徵:圓圓的,很光滑,它的表面是曲面。放在桌子上能向任意方向滾動。
5、立體圖形的拼擺:用長方體或正方體能拼組出不同形狀的立體圖形,在拼好的立體圖形中,有一些部位從一個角度是看不到的,要從多個角度去觀察。用小圓柱可以拼成更大的圓柱。
第五單元
6-10的認識和加減法
一、6—10的認識:
1、數數:根據物體的個數,可以用6—10各數來表示。數數時,從前往後數也就是從小往大數。
2、10以內數的順序:
(1)從前往後數:0、1、2、3、4、5、6、7、8、9、10。
(2)從後往前數:10、9、8、7、6、5、4、3、2、1、0。
3、比較大小:按照數的順序,後面的數總是比前面的數大。
4、序數含義:用來表示物體的次序,即第幾個。
5、數的組成:一個數(0、1除外)可以由兩個比它小的數組成。如:10由9和1組成。
記憶數的組成時,可由一組數想到調換位置的另一組。
二、6—10的加減法
1、10以內加減法的計算方法:根據數的組成來計算。
2、一圖四式:根據一副圖的思考角度不同,可寫出兩道加法算式和兩道減法算式。
3、「大括弧」下面有問號是求把兩部分合在一起,用加法計算。「大括弧」上面的一側有問號是求從總數中去掉一部分,還剩多少,用減法計算。
三、連加連減
1、連加的計算方法:計算連加時,按從左到右的順序進行,先算前兩個數的和,再與第三個數相加。
2、連減的計算方法:計算連減時,按從左到右的順序進行,先算前兩個數的差,再用所得的數減去第三個數。
四、加減混合
加減混合的計算方法:計算時,按從左到右的順序進行,先把前兩個數相加(或相減),再用得數與第三個數相減(或相加)。
第六單元
11-20各數的認識
1、數數:根據物體的個數,可以用11—20各數來表示。
2、數的順序:11—20各數的順序是:11、12、13、14、15、16、17、18、19、20、
3、比較大小:可以根據數的順序比較,後面的數總比前面的數大,或者利用數的組成進行比較。
4、11—20各數的組成:都是由1個十和幾個一組成的,20由2個十組成的。如:1個十和5個一組成15。
5、數位:從右邊起第一位是個位,第二位是十位。
6、11—20各數的讀法:從高位讀起,十位上是幾就讀幾十,個位上是幾就讀幾。20的讀法,20讀作:二十。
7、寫數:寫數時,對照數位寫,有1個十就在十位上寫1,有2個十就在十位上寫2.有幾個一,就在個位上寫幾,個位上一個單位也沒有,就寫0佔位。
8、十加幾、十幾加幾與相應的減法
(1)、10加幾和相應的減法的計算方法:10加幾得十幾,十幾減幾得十,十幾減十得幾。
如:10+5=1517-7=1018-10=8
(2)、十幾加幾和相應的減法的計算方法:計算十幾加幾和相應的減法時,可以利用數的組成來計算,也可以把個位上的數相加或相減,再加整十數。
(3)、加減法的各部分名稱:
在加法算式中,加號前面和後面的數叫加數,等號後面的數叫和。
在減法算式中,減號前面的數叫被減數,減號後面的數叫減數,等號後面的數叫差。
9、解決問題
求兩個數之間有幾個數,可以用數數法,也可以用畫圖法。還可以用計演算法(用大數減小數再減1的方法來計算)。
第七單元
認識鍾表
1、認識鍾面
鍾面:鍾面上有12個數,有時針和分針。
分針:鍾面上又細又長的指針叫分針。
時針:鍾面上又粗又短的指針叫時針。
2、鍾表的種類:日常生活中的鍾表一般分兩種,一種:掛鍾,鍾面上有12個數,分針和時針。另一種:電子表,表面上有兩個點「:」,「:」的左邊和右邊都有數。
3、認識整時:分針指向12,時針指向幾就是幾時;電子表上,「:」的右邊是「00」時表示整時,「:」的左邊是幾就是幾時。
4、整時的寫法:整時的寫法有兩種:寫成幾時或電子表數字的形式。如:8時或8:00
第八單元
20以內的進位加法
1、9加幾計算方法:計算9加幾的進位加法,可以採用「點數」「接著數」「湊十法」等方法進行計算,其中「湊十法」比較簡便。
利用「湊十法」計算9加幾時,把9湊成10需要1,就把較小數拆成1和幾,10加幾就得十幾。
2、8、7、6加幾的計算方法:(1)點數;(2)接著數;(3)湊十法。可以「拆大數、湊小數」,也可以「拆小數、湊大數」。
3、5、4、3、2加幾的計算方法:(1)「拆大數、湊小數」。(2)「拆小數、湊大數」。
4、解決問題
(1)解決問題時,可以從不同的角度觀察、分析、從而找到不同的解題方法。
(2)求總數的實際問題,用加法計算。
一年級 數學 學習方法
小學一年級的學習應以培養興趣為主,只有在低年級時培養起良好的學習興趣,養成良好的思維習慣,才能夠在以後的學習中取得更快的進步。
這個階段孩子需要積累的是,簡單的運算知識和規律,簡單圖形的認識和分析能力,找規律,讓孩子學會一種嘗試的方法,簡單的邏輯推理能力。
課堂上既想讓他們學到知識又想讓他們感到輕松有趣,所以對他們採取不同的教學方式,以 故事 、詩歌、 謎語 為載體來開展教學的,對孩子來說是在娛樂中學?習,並沒有您想像中的那麼枯燥、乏味。下面具體談談一年級孩子學數學的方法建議:
1、接觸數學,興趣第一。
我們接觸過不少四五年級希望開始學習華數的學生,令人驚訝的是,這些學生中有相當一部分學生其實在低年級時曾經學過數學的,但因為當時學習聽課效果不好便放棄了,到了高年級,迫於小學六年級形勢又不得不學。對於這樣的學生,學習數學是有一定陰影的,甚至有些學生抱定了自己不適合學數學的念頭,有一定抵觸心理。
所以既然家長決定低年級開始學習數學,一定要首先注意興趣上的培養,幫助他們找到數學中引起他們興趣的事情,比如數字游戲等等。
2、找一位孩子最喜歡的老師。
既然剛剛接觸數學,興趣是第一位的,那找一位孩子喜歡的老師就是學習的重中之重。一位好的老師能夠讓孩子迅速喜歡上課堂,以自己的人格魅力感染學生。?在課堂上,老師不僅是孩子的師長,也是孩子的朋友,和孩子們一起探討問題,一起思考,使孩子們養成良好的學習習慣,在喜歡老師的同時喜歡數學。
3、用一套最的教材。
通過長期的數學學習,可以使學生的數學學習能力和素質得到培養,思維能力、智力潛能得到很好的開發,現已被眾多學有餘力和學有興趣的學生所青睞。數學?課程可以使您的孩子「開思維之竅,入解題之門」,幫助孩子奠定堅實的基礎,攀登數學的顛峰!《小學數學練習機》里就有很多好教程。
4、從最合適的起點開始。
剛剛接觸數學,學不懂不是孩子不適合學數學,是起點不合適。舉個例子:《小學數學練習機》里有很多非常好的教程,但是裡面的《秘笈》中的很多知識超前於學校的課本,如果利用的不好,很容易打擊孩子的積極性和自信心,這是目前導致很多孩子不喜歡數學,厭惡數學的最主要的原因之一。
學習重點難點解析:
1、巧算與速算的基本知識:對於一年級的學生來說,計算是學生學習時遇到的第一個問題。如果能夠在看似無序的算式中尋找到一定的規律,化繁為簡,那麼學生一定能夠增強學習數學的信心,提高學習數學的興趣。另外,計算與速算是各種後續問題學習的基礎。學好數學,首先就要過計算這關。
2、認識並學會數各種基本圖形:正方形、長方體、圓和立方體等是小學學習中最常見的圖形。通過系統的指導,使一年級的學生能夠計算出各種基本圖形的個數;使學生建立起有序思維,為建立思維模式打下基礎。
3、學習簡單的枚舉法:枚舉法對於一年級的學生來說的確是有一定的困難。在數學課本中,介紹這一難題時採用數數這種更為直觀的方式,將復雜抽象的問題形象化,便於孩子們理解。枚舉法訓練的重點在於有序的 思維方式 ,學習之初將抽象問題形象化,能夠更好地引導學生去主動思考,建立起自己的思維方式。
4、數字的奇與偶、不等與相等等關於數論的基礎知識:數論問題是後續學習中的一個重點,而這學期將要學到的:數字的奇與偶、不等與相等等無疑將會是今後學習的基礎,在這里我們把數論問題分解為各種類型逐一講解,使數學學習更加系統。
一年級數學學習技巧
1.學好數學,必須掌握三個基本概念:基本概念、基本規律和基本方法。
2。在完成主題後,我們必須仔細 總結 並相互推論。這樣,我們就不會花太多的時間和精力,當我們遇到同樣的問題在未來。
3.一定要得到一個全面的對數學概念的理解,並且不能有偏見。
4.學習概念的最終目的是用概念來解決具體問題。因此,我們應該主動運用所學到的數學概念來分析和解決相關的數學問題。
5.我們應該掌握各種解決問題的方法,在實踐中有意識地總結,慢慢培養合適的分析習慣。
6、要主動提高綜合分析能力,利用文本閱讀進行分析和理解。
7.在學習中,要注意有意識地轉移知識,培養解決問題的能力。
8.為了貫穿我們所學到的形成一個系統的知識,我們可以使用類比關系方法。
9.每一章的內容都是相互關聯的,不同章節之間的比較,以及前後的知識真正整合在一起,有助於我們更深入地理解知識體系和內容。
10.在數學學習中,通過對相似的概念或規律進行比較,找出它們的相同點、不同點和聯系,從而加深它們的理解和記憶。明確數學知識之間的相互關系,深入理解數學知識的概念,了解數學知識的衍生過程,使知識有序、系統化。
11。學習數學不僅要關注問題,還要關注典型問題。
12。對於一些數學原理、定理公式,不僅記得其結論,了解這一結論。
13.學習數學,記住並正確描述概念和規律。
14.在學習過程中,要注重理解,解放思想,把抽象化為具體,逐步培養學習數學的興趣。
15。對概念進行恰當的分類可以簡化學習內容,突出重點,明確上下文,便於分析、比較、綜合和概念。
16.數學學習是最忌諱的知識歧義,知識點被混淆在一起,為了避免這種情況,學生應該學會寫「知識結構摘要」。
17.學會對問題類型進行劃分和組合,學會從多角度、多方面分析和解決典型問題,並從中總結出基本問題類型和基本規律方法。
18.根據同一種數學知識之間的關系形成一個有機的整體,從而達到全局記憶的目的。
19.結合各種特殊培訓的特點,更多的學生和教師進行交流,學習他人的智慧,節省時間,提高問題的速度和質量,提高反應能力。
20。學習數學應該是循序漸進的,只要我們打好基礎,就可以逐步完善。
21。解決數學問題,關鍵是要建立正確的數學概念,從數學思維的角度來看,使用數學法則來解決。
22.認真聽課是奠定數學基礎的重要組成部分,也是牢固掌握基礎知識的根本途徑。
23.在解決這一問題時,可以嘗試採用不同的方法,如假設法、特殊值法、整體法等。
24、要深刻認識知識點,認真研讀課本,認真傾聽,了解現實。
25.認真傾聽,一方面可以更好地掌握知識背景,加深理解,另一方面,也可以學習教師分析問題,解決問題的思路。
26.當我聽老師的評論時,我想先想一想如何做問題,然後看看老師的解決辦法是否一樣,也就是想想他們是否和老師一樣。閱讀並思考老師在黑板上解決問題的過程,想想他們是否能這樣寫,想想在解決問題的過程中是否有漏洞。
27.我們要注意三點:第一,學會用筆;第二,注意課後練習;第三,分層預習。
28.不要擔心一個或多個課程的糟糕成績。利用你的優勢。他們可以幫助你重建信心,這是成功的第一個關鍵。
29。在課堂上,我們應該注意以下三點:第一,用心觀察,緊跟教學思路;第二,善於做筆記;第三,積極回答問題,敢於提問。
30.如果你想真正的理解、認識和評價自己,要有勇氣面對自己和展示自己。
一年級數學下冊知識點相關 文章 :
★ 人教版一年級下冊數學知識點歸納
★ 小學一年級數學下冊的期末重點匯總
★ 人教版小學一年級數學下冊的期末重點匯總
★ 小學一年級下冊數學易錯題與復習技巧
★ 一年級數學必考知識點總結
★ 人教版一年級數學下冊復習資料
★ 編部一年級下冊數學知識點
★ 小學一年級下數學考點
★ 人教版一年級下冊數學
★ 一年級數學下冊復習計劃5篇
『叄』 小學四年級上冊數學知識點大全,快來看看吧!
1.大數的認識
億以內的數的認識:
十萬:10個一萬;
一百萬:10個十萬;
一千萬:10個一百萬;
一億:10個一千萬;
2.數級
數級是為便於人們記讀阿拉伯數的一種識讀方法,在位值制(數位順序)的基礎上,以三位或四位分級的原則,把數讀,寫出來。通常在阿拉伯數的書寫上,以小數點或者空格作為各個數級的標識,從右向左把數分開。
3.數級分類
(1)四位分級法
即以四位數為一個數級的分級轎沖方法。我國讀數的習慣,就是按這種方法讀的。
如:萬(數字後面4個0)、億(數字後面8個0)、兆(數字後面12個0,這是中法計數)……
這些級分別叫做個級,萬級,億級……
(2)三位分級法
即以三位數為一個數級的分級方法。這西方的分級方法,這種分級方法也是國際通行的分級方法。如:千,數字後面3個0、百萬,數字後面6個0、十億,數字後面9個0……。
4.數位
數位是指寫數時,把數字並列排成橫列,一個數字佔有一個位置,這些位置,都叫做數位。從右端算起,第一位是「個位」,第二位是「十位」,第三位是「百位」,第四位是「千位」,第五位是「萬位」,等等。這就說明計數單位和數位的概念是雹念不同的。
5.數的產生
阿拉伯數字的由來:古源帆困代印度人創造了阿拉伯數字後,大約到了公元7世紀的時候,這些數字傳到了阿拉伯地區。到13世紀時,義大利數學家斐波那契寫出了《算盤書》,在這本書里,他對阿拉伯數字做了詳細的介紹。後來,這些數字又從阿拉伯地區傳到了歐洲,歐洲人只知道這些數字是從阿拉伯地區傳入的,所以便把這些數字叫做阿拉伯數字。以後,這些數字又從歐洲傳到世界各國。
阿拉伯數字傳入我國,大約是13到14世紀。由於我國古代有一種數字叫「籌碼」,寫起來比較方便,所以阿拉伯數字當時在我國沒有得到及時的推廣運用。本世紀初,隨著我國對外國數學成就的吸收和引進,阿拉伯數字在我國才開始慢慢使用,阿拉伯數字在我國推廣使用才有100多年的歷史。阿拉伯數字現在已成為人們學習、生活和交往中最常用的數字了。
6.自然數
用以計量事物的件數或表示事物次序的數。
即用數碼0,1,2,3,4,……所表示的數。表示物體個數的數叫自然數,自然數由0開始(包括0),一個接一個,組成一個無窮的集體。
7.計算工具
算盤、計算器、計算機
8.射線
在幾何學中,直線上的一點和它一旁的部分所組成的圖形稱為射線。如下圖所示:
射線特點
(1)射線只有一個端點,它從一個端點向另一邊無限延長。
(2)射線不可測量。
9.直線
直線是點在空間內沿相同或相反方向運動的軌跡。
10.線段
線段用表示它兩個端點的字母或一個小寫字母表示,有時這些字母也表示線段長度,記作線段AB或線段BA,線段a。其中AB表示直線上的任意兩點。
11.線段特點
(1)有限長度,可以測量
(2)兩個端點
12.線段性質
(1)兩點之間線段最短。
(2)連接兩點間線段的長度叫做這兩點間的距離。
(3)直線上兩個點和它們之間的部分叫做線段,這兩個點叫做線段的端點。
直線沒有距離。射線也沒有距離。因為,直線沒有端點,射線只有一個端點,可以無限延長。
13.角
(1)角的靜態定義
具有公共端點的兩條不重合的射線組成的圖形叫做角。這個公共端點叫做角的頂點,這兩條射線叫做角的兩條邊。
(2)角的動態定義
一條射線繞著它的端點從一個位置旋轉到另一個位置所形成的圖形叫做角。所旋轉射線的端點叫做角的頂點,開始位置的射線叫做角的始邊,終止位置的射線叫做角的終邊
14.角的符號
角的符號:∠
15.角的種類
角的大小與邊的長短沒有關系;角的大小決定於角的兩條邊張開的程度,張開的越大,角就越大,相反,張開的越小,角則越小。在動態定義中,取決於旋轉的方向與角度。角可以分為銳角、直角、鈍角、平角、周角、負角、正角、優角、劣角、0角這10種。以度、分、秒為單位的角的度量制稱為角度制。此外,還有密位制、弧度制等。
(1)銳角:大於0°,小於90°的角叫做銳角。
(2)直角:等於90°的角叫做直角。
(3)鈍角:大於90°而小於180°的角叫做鈍角。
16.乘法
乘法是指一個數或量,增加了多少倍。例如4乘5,就是4增加了5倍率,也可以說成5個4連加。
17.乘法算式中各數的名稱
「×」是乘號,乘號前面和後面的數叫做因數,「=」是等於號,等於號後面的數叫做積。
10(因數)×(乘號)200(因數)=(等於號)2000(積)
18.平行
在平面上兩條直線、空間的兩個平面或空間的一條直線與一平面之間沒有任何公共點時,稱它們平行。如圖直線AB平行於直線CD,記作AB∥CD。平行線永不相交。
19.互相垂直
垂直兩條直線、兩個平面相交,或一條直線與一個平面相交,如果交角成直角,叫做互相垂直。
20.平行四邊形
在同一平面內有兩組對邊分別平行的四邊形叫做平行四邊形。
21.梯形
梯形是指一組對邊平行而另一組對邊不平行的四邊形。平行的兩邊叫做梯形的底邊,其中長邊叫下底,短邊叫上底;也可以單純的認為上面的一條叫上底,下面一條叫下底。不平行的兩邊叫腰;夾在兩底之間的垂線段叫梯形的高。
22.除法
除法法則:除數是幾位,先看被除數的前幾位,前幾位不夠除,多看一位,除到哪位,商就寫在哪位上面,不夠商一,0佔位。
余數要比除數小,如果商是小數,商的小數點要和被除數的小數點對齊;如果除數是小數,要化成除數是整數的除法再計算。
(3)如何看懂數字基礎知識擴展閱讀
11.「數位」與「位數」、「計數單位」均為意義不同的概念。
「數位」是指一個數的每個數字所佔的位置。數位順序表從右端算起,第一位是「個位」,第二位是「十位」,第三位是「百位」,第四位是「千位」,第五位是「萬位」,等等。同一個數字,由於所在的數位不同,它所表示的數值也就不同。例如,在用阿拉伯數字表示數時,同一個『6』,放在十位上表示6個十,放在百位上表示6個百,放在億位上表示6個億等等。
「位數」是指一個自然數中含有數位的個數。像458這個數有三個數字組成,每個數字佔了一個數位,我們就把它叫做三位數。198023456由9個數字組成,那它就是一個九位數。「數位」與「位數」不能混淆。
計數單位:一(個)、十、百、千、萬、十萬、百萬、千萬、億、十億、百億、千億……,都是計數單位。「個位」上的計數單位是「一(個),「十位」上的計數單位是「十」,「百位」上的計數單位是「百」,「千位」上的計數單位是「千」,「萬位」上的計數單位是「萬」等等。所以在讀數時先讀數字再讀計數單位。
22.自然數知識擴展
自然數集有加法和乘法運算,兩個自然數相加或相乘的結果仍為自然數,也可以作減法或除法,但相減和相除的結果未必都是自然數,所以減法和除法運算在自然數集中並不是總能成立的。
自然數是人們認識的所有數中最基本的一類,為了使數的系統有嚴密的邏輯基礎,19世紀的數學家建立了自然數的兩種等價的理論:自然數的序數理論和基數理論,使自然數的概念、運算和有關性質得到嚴格的論述。一定是整數。用以計量事物的件數或表示事物次序的數。即用數碼0,1,2,3,4,……所表示的數。表示物體個數的數叫自然數,自然數由0開始(包括0),一個接一個,組成一個無窮的集體。
33.角的其他分類
平角:等於180°的角叫做平角。
優角:大於180°小於360°叫優角。
劣角:大於0°小於180°叫做劣角,銳角、直角、鈍角都是劣角。
周角:等於360°的角叫做周角。
負角:按照順時針方向旋轉而成的角叫做負角。
正角:逆時針旋轉的角為正角。
0角:等於零度的角。
餘角和補角:兩角之和為90°則兩角互為餘角,兩角之和為180°則兩角互為補角。等角的餘角相等,等角的補角相等。
對頂角:兩條直線相交後所得的只有一個公共頂點且兩個角的兩邊互為反向延長線,這樣的兩個角叫做互為對頂角。兩條直線相交,構成兩對對頂角。互為對頂角的兩個角相等。
還有許多種角的關系,如內錯角,同位角,同旁內角(三線八角中,主要用來判斷平行)
44.平行線的性質
(1)兩條直線平行,同旁內角互補。
(2)兩條直線平行,內錯角相等。
(3)兩條直線平行,同位角相等。
55.平行線的判定(同一平面內)
(1)同旁內角互補,兩直線平行。
(2)內錯角相等,兩直線平行。
(3)同位角相等,兩直線平行。
(4)如果兩條直線同時與第三條直線平行,那麼這兩條直線互相平行。
(5)如果兩條直線同時垂直於第三條直線,那麼這兩條直線互相平行。
66.垂線性質
(1)在同一平面內,過一點有且只有一條直線與已知直線垂直。
(2)連接直線外一點與直線上各點的所有線段中,垂線段最短。簡單說成:垂線段最短。
(3)點到直線的距離:直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。