當前位置:首頁 » 基礎信息 » 數量分析基礎學什麼
擴展閱讀
送同學小禮物送什麼 2025-02-02 09:53:46
k線基礎知識什麼是k線 2025-02-02 09:48:57

數量分析基礎學什麼

發布時間: 2023-08-26 22:04:56

❶ 學習數據分析需要哪些基礎

數據分析這個崗位可以說很寬泛很雜,從數據錄入員到行業分析師科學家都可以認為是數據分析,甚至一些搞數據挖掘、人工智慧的都可以包括到數據分析的范疇里,但是這些工作所做的事情卻相差甚遠,當然待遇也天壤之別。所以大家在應聘時不要只看崗位名稱,重要的是看看清崗位職責和要求。言歸正傳,咱們談談如何學習數據分析。
1、學科知識:從數據分析涉及到的專業知識點上看,主要是這些:
(1)統計學:參數檢驗、非參檢驗、回歸分析等
(2)數學:線性代數、微積分等
(3)社會學:主要是一些社會學量化統計的知識,如問卷調查與統計分析;還有就是一些社會學的知識,這些對於從事營銷類的數據分析人員比較有幫助
(4)經濟金融:如果是從事這個行業的數據分析人員,經濟金融知識是必須的,這里就不多說了
(5)計算機:從事數據分析工作的人必須了解你使用的數據是怎麼處理出來的,要了解資料庫的結構和基本原理,同時如果條件充足的話,你還能有足夠的能力從資料庫里提取你需要的數據(比如使用SQL進行查詢),這種提取數據分析原材料的能力是每個數據從業者必備的。此外,如果要想走的更遠,還要能掌握一些編程能力,從而借住一些專業的數據分析工具,幫助你完成工作。
……
好好學習,雖然累,但是要堅持!
2、軟體相關:從事數據分析方面的工作必備的工具是什麼
(1)數據分析報告類:Microsoft Office軟體、水晶易表等,如果連excel表格基本的處理操作都不會,連PPT報告都不會做,那我只好說離數據分析的崗位還差的很遠。現在的數據呈現不再單單只是表格的形式,而是更多需要以可視化圖表去展示你的數據結果,因為數據可視化軟體就不能少,BDP個人版、TABLUEA、Echart等這些必備的,就看你自己怎麼選了。
(2)專業數據分析軟體:Office並不是全部,要從在數據分析方面做的比較好,你必須會用(至少要了解)一些比較常用的專業數據分析軟體工具,比如SPSS、SAS、Matlab等等,這些軟體可以很好地幫助我們完成專業性的演算法或模型分析,還有高級的python、R等。
(3)資料庫:hive、hadoop、impala等資料庫相關的知識可以學習;
(3)輔助工具:比如思維導圖軟體(如MindManager、MindNode Pro等)也可以很好地幫助我們整理分析思路。
最重要的是:理論知識+軟體工具=數據分析基礎,最後要把這些數據分析基礎運用到實際的工作業務中,好好理解業務邏輯,真正用數據分析驅動網站運營、業務管理,真正發揮數據的價值

❷ 數據分析都要學習哪些內容

1、數學知識


數學知識是數據分析師的基礎知識。對於初級數據分析師,了解一些描述統計相關的基礎內容,有一定的公式計算能力即可,了解常用統計模型演算法則是加分。


2、分析工具


對於初級數據分析師,玩轉Excel是必須的,數據透視表和公式使用必須熟練,VBA是加分。另外,還要學會一個統計分析工具,SPSS作為入門是比較好的。


3、編程語言


對於初級數據分析師,會寫SQL查詢,有需要的話寫寫Hadoop和Hive查詢,基本就OK了。對於高級數據分析師,除了SQL以外,學習Python是很有必要的,用來獲取和處理數據都是事半功倍。當然其他編程語言也是可以的。


4、業務理解


業務理解說是數據分析師所有工作的基礎也不為過,數據的獲取方案、指標的選取、乃至最終結論的洞察,都依賴於數據分析師對業務本身的理解。


5、邏輯思維


這項能力在我之前的文章中提的比較少,這次單獨拿出來說一下。


對於初級數據分析師,邏輯思維主要體現在數據分析過程中每一步都有目的性,知道自己需要用什麼樣的手段,達到什麼樣的目標。對於高級數據分析師,邏輯思維主要體現在搭建完整有效的分析框架,了解分析對象之間的關聯關系,清楚每一個指標變化的前因後果,會給業務帶來的影響。


6、數據可視化


數據可視化說起來很高大上,其實包括的范圍很廣,做個PPT里邊放上數據圖表也可以算是數據可視化,所以我認為這是一項普遍需要的能力。

❸ 數據分析需要掌握哪些知識

數學知識
對於初級數據分析師來說,則需要了解統計相關的基礎性內容,公式計算,統計模型等。當你獲得一份數據集時,需要先進行了解數據集的質量,進行描述統計。

而對於高級數據分析師,必須具備統計模型的能力,線性代數也要有一定的了解。分析工具
對於分析工具,SQL 是必須會的,還有要熟悉Excel數據透視表和公式的使用,另外,還要學會一個統計分析工具,SAS作為入門是比較好的,VBA 基本必備,SPSS/SAS/R 至少要熟練使用其中之一,其他分析工具(如 Matlab)可以視情況而定。編程語言
數據分析領域最熱門的兩大語言是 R 和 Python。涉及各類統計函數和工具的調用,R無疑有優勢。但是大數據量的處理力不足,學習曲線比較陡峭。Python 適用性強,可以將分析的過程腳本化。所以,如果你想在這一領域有所發展,學習 Python 也是相當有必要的。

當然其他編程語言也是需要掌握的。要有獨立把數據化為己用的能力, 這其中SQL 是最基本的,你必須會用 SQL 查詢數據、會快速寫程序分析數據。當然,編程技術不需要達到軟體工程師的水平。要想更深入的分析問題你可能還會用到:Exploratory analysis skills、Optimization、Simulation、Machine Learning、Data Mining、Modeling 等。業務理解
對業務的理解是數據分析師工作的基礎,數據的獲取方案、指標的選取、還有最終結論的洞察,都依賴於數據分析師對業務本身的理解。

對於初級數據分析師,主要工作是提取數據和做一些簡單圖表,以及少量的洞察結論,擁有對業務的基本了解就可以。對於高級數據分析師,需要對業務有較為深入的了解,能夠基於數據,提煉出有效觀點,對實際業務能有所幫助。對於數據挖掘工程師,對業務有基本了解就可以,重點還是需要放在發揮自己的技術能力上。邏輯思維
對於初級數據分析師,邏輯思維主要體現在數據分析過程中每一步都有目的性,知道自己需要用什麼樣的手段,達到什麼樣的目標。對於高級數據分析師,邏輯思維主要體現在搭建完整有效的分析框架,了解分析對象之間的關聯關系,清楚每一個指標變化的前因後果,會給業務帶來的影響。對於數據挖掘工程師,羅輯思維除了體現在和業務相關的分析工作上,還包括演算法邏輯,程序邏輯等,所以對邏輯思維的要求也是最高的。數據可視化數據可視化主要藉助於圖形化手段,清晰有效地傳達與溝通信息。聽起來很高大上,其實包括的范圍很廣,做個 PPT 里邊放上數據圖表也可以算是數據可視化。

對於初級數據分析師,能用 Excel 和 PPT 做出基本的圖表和報告,能清楚地展示數據,就達到目標了。對於稍高級的數據分析師,需要使用更有效的數據分析工具,根據實際需求做出或簡單或復雜,但適合受眾觀看的數據可視化內容。協調溝通
數據分析師不僅需要具備破譯數據的能力,也經常被要求向項目經理和部門主管提供有關某些數據點的建議,所以,你需要有較強的交流能力。

❹ 數據分析需要學哪些

數據分析第一步就是要學習excel,從基本操作、函數公式、數據透視表、數組等等,都要熟悉。要重點說一下excel函數公式,個人覺得函數公式是數據分析的基礎,拉個透視表實在不算啥,能熟練地運用函數公式,那才是牛人。

如果對編程很懼怕,那就直接跳過VBA,下面就是powerBI。powerBI的發展完全出乎我的預料,因為在我看來,powerBI就是一個可視化的工具,沒有什麼分析功能,但是學員以及學員的老闆都喜歡,我也不好說什麼。powerBI在數據整理、可視化方面做得還不錯,反正現在是熱點。

數據分析軟體

如果是比較專業地做數據,我建議學一個工具,就是SPSS,這個是統計分析的入門級大牌軟體,SPSS搞清楚了,基本的統計概念、模型都搞清楚了。下面一個就是VBA,VBA是一個很傳統老舊的工具,但是在excel環境中,超級實用。

曾經有學員跟我說,其實VBA就可以搞定大部分工作上的問題了。資料庫方面也需要掌握,mysql是一個很好的選擇,掌握了mysql,資料庫的基本原理就清楚了。

再往下,就是專業數據分析工具了,有兩個選擇python和R,我個人傾向於python,python現在更流行熱門一點。最後說一句,傷其五指不如斷其一指,干任何事情講的都是專業性,不太需要雜家,以上講的工具,任何一個要做到牛人級別都很難,都需要努力學習。




❺ 學習數據分析要懂得哪些數學知識

1、數據分布


數據分布主要靠幾何分布、泊松分布、二項分布來研究數據的分布趨勢。例如,目標數據段整體分布是發散的還是集中的?集中在哪個頻率段?中位數集中在哪個區間段?佔80%的數據集中在什麼數據區間段?看分布的目的就是了解業務數據是否穩定,以及數據的集中度。


2、正態分布


正態數據類型按照屬性可以分為連續型數據和離散型數據。連續型數據屬於可以不斷細分的數據,如:長度,寬度,高度,密度,溫度等。離散型數據不可被細分,主要來表達客觀事物的屬性,如:個數,屬性,比率等。


3、統計抽樣


統計抽樣涉及到如何設計樣本、點量估計、比例抽樣分析。當對海量數據進行數據分析,查看數據分布情況的時候比較困難。就需要對樣本進行抽樣,通過抽樣樣本分布情況來反映總體樣本的分布情況。

❻ 數據分析需要學習哪些

1、數學知識



數學知識是數據分析師的基礎知識。對於初級數據分析師,了解一些描述統計相關的基礎內容,有一定的公式計算能力即可,了解常用統計模型演算法則是加分。



對於高級數據分析師,統計模型相關知識是必備能力,線性代數(主要是矩陣計算相關知識)最好也有一定的了解。



而對於數據挖掘工程師,除了統計學以外,各類演算法也需要熟練使用,對數學的要求是最高的。



所以數據分析並非一定要數學能力非常好才能學習,只要看你想往哪個方向發展,數據分析也有偏“文”的一面,特別是女孩子,可以往文檔寫作這一方向發展。



2、分析工具



對於初級數據分析師,玩轉Excel是必須的,數據透視表和公式使用必須熟練,VBA是加分。另外,還要學會一個統計分析工具,SPSS作為入門是比較好的。



對於高級數據分析師,使用分析工具是核心能力,VBA基本必備,SPSS/SAS/R至少要熟練使用其中之一,其他分析工具(如Matlab)視情況而定。



對於數據挖掘工程師……嗯,會用用Excel就行了,主要工作要靠寫代碼來解決呢。



3、編程語言



對於初級數據分析師,會寫SQL查詢,有需要的話寫寫Hadoop和Hive查詢,基本就OK了。



對於高級數據分析師,除了SQL以外,學習Python是很有必要的,用來獲取和處理數據都是事半功倍。當然其他編程語言也是可以的。



對於數據挖掘工程師,Hadoop得熟悉,Python/Java/C++至少得熟悉一門,Shell得會用……總之編程語言絕對是數據挖掘工程師的最核心能力了。



4、業務理解



業務理解說是數據分析師所有工作的基礎也不為過,數據的獲取方案、指標的選取、乃至最終結論的洞察,都依賴於數據分析師對業務本身的理解。



對於初級數據分析師,主要工作是提取數據和做一些簡單圖表,以及少量的洞察結論,擁有對業務的基本了解就可以。



對於高級數據分析師,需要對業務有較為深入的了解,能夠基於數據,提煉出有效觀點,對實際業務能有所幫助。



對於數據挖掘工程師,對業務有基本了解就可以,重點還是需要放在發揮自己的技術能力上。



業務能力是優秀數據分析師必備的,如果你之前對某一行業已經非常熟悉,再學習數據分析,是非常正確的做法。剛畢業沒有行業經驗也可以慢慢培養,無需擔心。



5、邏輯思維



這項能力在我之前的文章中提的比較少,這次單獨拿出來說一下。



對於初級數據分析師,邏輯思維主要體現在數據分析過程中每一步都有目的性,知道自己需要用什麼樣的手段,達到什麼樣的目標。



對於高級數據分析師,邏輯思維主要體現在搭建完整有效的分析框架,了解分析對象之間的關聯關系,清楚每一個指標變化的前因後果,會給業務帶來的影響。



對於數據挖掘工程師,邏輯思維除了體現在和業務相關的分析工作上,還包括演算法邏輯,程序邏輯等,所以對邏輯思維的要求也是最高的。



6、數據可視化



數據可視化說起來很高大上,其實包括的范圍很廣,做個PPT里邊放上數據圖表也可以算是數據可視化,所以我認為這是一項普遍需要的能力。



對於初級數據分析師,能用Excel和PPT做出基本的圖表和報告,能清楚的展示數據,就達到目標了。



對於高級數據分析師,需要探尋更好的數據可視化方法,使用更有效的數據可視化工具,根據實際需求做出或簡單或復雜,但適合受眾觀看的數據可視化內容。



對於數據挖掘工程師,了解一些數據可視化工具是有必要的,也要根據需求做一些復雜的可視化圖表,但通常不需要考慮太多美化的問題。



7、協調溝通



對於初級數據分析師,了解業務、尋找數據、講解報告,都需要和不同部門的人打交道,因此溝通能力很重要。



對於高級數據分析師,需要開始獨立帶項目,或者和產品做一些合作,因此除了溝通能力以外,還需要一些項目協調能力。



對於數據挖掘工程師,和人溝通技術方面內容偏多,業務方面相對少一些,對溝通協調的要求也相對低一些。