當前位置:首頁 » 基礎信息 » 激光激基礎有哪些
擴展閱讀
春遊同學像什麼 2025-02-12 18:52:57
開窗簾店基礎知識大全 2025-02-12 18:35:49

激光激基礎有哪些

發布時間: 2023-06-06 13:43:35

❶ 光電效應、核能、激光的研究基礎是什麼

1.太陽能電池、防盜報警器和照相機的測光表都是以光電效應為基礎的.

2.核能利用了這樣一個物理現象:當鈾原子發生裂變時,總質量的微量損失可以轉變成能量,其依據正是愛因斯坦的著名等式E=Mc2.如今,核能為英國提供了25%的電力.

3.全球定位系統之所以能將物體的位置精確到米,正是根據愛因斯坦的相對論對地球衛星發出的信號進行了修正.

4.狹義相對論與量子理論相結合,指出了反物質的存在.科學家們利用正電子,即反物質「電子」,通過X射線層析照相術研究大腦活動.

5.亞原子粒子的特性是相對論的直接結果,其存在可以解釋從化學元素的特性到磁鐵作用的多種現象.

6.愛因斯坦1916至1917年對光子的研究為人類40年後發現激光奠定了基礎.目前激光廣泛應用於從DVD到激光列印機的多種產品.

(1)激光激基礎有哪些擴展閱讀:

愛因斯坦1879年出生於德國烏爾姆市的一個猶太人家庭(父母均為猶太人),1900年畢業於蘇黎世聯邦理工學院,入瑞士國籍。

1905年,獲蘇黎世大學哲學博士學位,愛因斯坦提出光子假設,成功解釋了光電效應,因此獲得1921年諾貝爾物理獎,1905年創立狹義相對論。1915年創立廣義相對論。

1955年4月18日去世,享年76歲。

愛因斯坦為核能開發奠定了理論基礎,開創了現代科學技術新紀元,被公認為是繼伽利略、牛頓以來最偉大的物理學家。

1999年12月26日,愛因斯坦被美國《時代周刊》評選為「世紀偉人」。

❷ 激光的資料

激光(laser)是指受激輻射產生的光放大,是一種高質量的光源。
激光的特點: 1.方向性好 2.單色性好 3.能量集中 4.相乾性好
激光的生物組織效應:
1.光熱效應 2.光化效應 3.電磁效應 4.壓力效應
激光的生物組織作用: 1.高功率激光凝固、灼除、汽化 2.低功率激光照射
3.「光刀」精細分割
激光,是一種自然界原本不存在的,因受激而發出的具有方向性好、亮度高、單色性好和相乾性好等特性的光。物理學家把產生激光的機理溯源到1917年愛因斯坦解釋黑體輻射定律時提出的假說,即光的吸收和發射可經由受激吸收、受激輻射和自發輻射三種基本過程。眾所周知,任何一種光源的發光都與其物質內部粒子的運動狀態有關。當處於低能級上的粒子(原子、分子或離子)吸收了適當頻率外來能量(光)被激發而躍遷到相應的高能級上(受激吸收)後,總是力圖躍遷到較低的能級去,同時將多餘的能量以光子形式釋放出來。如果光是在沒有外來光子作用下自發地釋放出來的(自發輻射),此時被釋放的光即為普通的光(如電燈、霓虹燈等),其特點是光的頻率大小、方向和步調都很不一致。但如果是在外來光子直接作用下由高能級向低能級躍遷時將多餘的能量以光子形式釋放出來(受激輻射),被釋放的光子則與外來的入射光子在頻率、位相、傳播方向等方面完全一致,這就意味著外來光得到了加強,我們稱之為光放大。顯然,如果通過受激吸收,使處於高能級的粒子數比處於低能級的越多(粒子數反轉),這種光的放大現象就越明顯,這時就有可能形成激光了。

激光之所以被譽為神奇的光,是因為它有普通光所完全不具備的四大特性。

1.方向性好 ——普通光源(太陽、白熾燈或熒光燈)向四面八方發光,而激光的發光方向可以限制在小於幾個毫弧度立體角內(圖8-9),這就使得在照射方向上的照度提高千萬倍。激光準直、導向和測距就是利用方向性好這一特性。

2.亮度高 ——激光是當代最亮的光源,只有氫彈爆炸瞬間強烈的閃光才能與它相比擬。太陽光亮度大約是103瓦/(厘米2.球面度),而一台大功率激光器的輸出光亮度經太陽光高出7~14個數量級。這樣,盡管激光的總能量並不一定很大,但由於能量高度集中,很容易在某一微小點處產生高壓和幾萬攝氏度甚至幾百萬攝氏度高溫。激光打孔、切割、焊接和激光外科手術就是利用了這一特性。

3.單色性好 ——光是一種電磁波。光的顏色取決於它的波長。普通光源發出的光通常包含著各種波長,是各種顏色光的混合。太陽光包含紅、登、黃、綠、青、藍、紫七種顏色的可見光及紅外光、紫外光等不可見光。而某種激光的波長,只集中在十分窄的光譜波段或頻率范圍內。如氦氖激光的波長為632.8納米,其波長變化范圍不到萬分之一納米。由於激光的單色性好,為精密度儀器測量和激勵某些化學反應等科學實驗提供了極為有利的手段。

4.相乾性好 ——干涉是波動現象的一種屬性。基於激光具有高方向性和高單色性的特性,它必然相乾性極好。激光的這一特性使全息照相成為現實。 ——所謂激光技術,就是探索開發各種產生激光的方法以及探索應用激光的這些特性為人類造福的技術的總稱。自1960年美國研製成功世界上第一台紅寶石激光器,我國也於1961年研製成功國產首台紅寶石激光器以來,激光技術被認為是20世紀繼量子物理學、無線電技術、原子能技術、半導體技術、電子計算機技術之後的又一重大科學技術新成就。30多年來,激光技術得到突飛猛進的發展,不僅研製了各個特色的多種多樣的激光器,而且激光應用領域不斷拓展,並形成了激光唱盤唱機、激光醫療、激光加工、激光全息照相、激光照排印刷、激光列印以及激光武器等一系列新興產業。激光技術的飛速發展,使其成為當今新技術革命的「帶頭技術」之一。

❸ [光學]激光的物理基礎是什麼。。。

激光的產生涉及到原子物理學,簡單說不清發一段原理你看看吧
若原子或分子等微觀粒子具有高能級E2和低能級E1,E2和E1能級上的布居數密度為N2和N1,在兩能級間存在著自發發射躍遷、受激發射躍遷和受激吸收躍遷等三種過程。受激發射躍遷所產生的受激發射光,與入射光具有相同的頻率、相位、傳播方向和偏振方向。因此,大量粒子在同一相干輻射場激發下產生的受激發射光是相乾的。受激發射躍遷幾率和受激吸收躍遷幾率均正比於入射輻射場的單色能量密度。當兩個能級的統計權重相等時,兩種過程的幾率相等。在熱平衡情況下N2<N1,所以受激吸收躍遷占優勢,光通過物質時通常因受激吸收而衰減。外界能量的激勵可以破壞熱平衡而使N2>N1,這種狀態稱為粒子數反轉狀態。在這種情況下,受激發射躍遷占優勢。光通過一段長為l的處於粒子數反轉狀態的激光工作物質(激活物質)後,光強增大eGl倍。G為正比於(N2-N1)的系數,稱為增益系數,其大小還與激光工作物質的性質和光波頻率有關。一段激活物質就是一個激光放大器。
如果,把一段激活物質放在兩個互相平行的反射鏡(其中至少有一個是部分透射的)構成的光學諧振腔中(圖1),處於高能級的粒子會產生各種方向的自發發射。其中,非軸向傳播的光波很快逸出諧振腔外:軸向傳播的光波卻能在腔內往返傳播,當它在激光物質中傳播時,光強不斷增長。如果諧振腔內單程小信號增益G0l大於單程損耗δ(G0l是小信號增益系數),則可產生自激振盪。原子的運動狀態可以分為不同的能級,當原子從高能級向低能級躍遷時,會釋放出相應能量的光子(所謂自發輻射)。同樣的,當一個光子入射到一個能級系統並為之吸收的話,會導致原子從低能級向高能級躍遷(所謂受激吸收);然後,部分躍遷到高能級的原子又會躍遷到低能級並釋放出光子(所謂受激輻射)。這些運動不是孤立的,而往往是同時進行的。當我們創造一種條件,譬如採用適當的媒質、共振腔、足夠的外部電場,受激輻射得到放大從而比受激吸收要多,那麼總體而言,就會有光子射出,從而產生激光。