當前位置:首頁 » 基礎信息 » 高數一基礎有哪些
擴展閱讀
三國教育怎麼樣的 2025-02-12 23:38:37

高數一基礎有哪些

發布時間: 2023-06-05 13:35:12

『壹』 高數必備基礎知識

高數必備基礎知識,主要包括各種知識點,現在總結如下:
1、正確理解函數的概念,了解函數的奇偶性、單調性、周期性和有界性,理解復合函數、反函數及隱函數的概念。2、理解極限的概念,理解函數左、右極限的概念以及極限存在與左右極限之間的關系。理解無窮小、無窮大以及無窮小階的概念,會用等價無窮小求極限,掌握無窮小的比較方法。
3、理解函數連續性的概念,會判別函數間斷點的類型。了解初等函數的連續性和閉區間上連續函數的性質(最大值、最小值定理和介值定理),並會應用這些性質。
4、掌握利用兩個重要的極限:lim(sinx/x)=1,lim(1+1/x)=e,理解連續函數的概念及閉區間上連續函數的性質。5、理解分段函數、復合函數的概念,了解反函數和隱函數的概念。
一元函數微分學1、理解導數和微分的概念,導數的幾何意義,會求平面曲線的切線方程,理解函數可導性與連續性之間的關系。
2、掌握導數的四則運演算法則和一階微分的形式不變性。了解高階導數的概念,會求簡單函數的n階導數,分段函數的一階、二階導數。會求隱函數和由參數方程所確定的函數的一階、二階導數及反函數的導數。
3、理解並會用羅爾中值定理,拉格朗日中值定理,了解並會用柯西中值定理。
4、掌握函數單調性的判別方法,了解函數極值的概念,掌握函數極值、最大值和最小值的求法及其應用。
5、理解函數極值的概念,掌握函數最大值和最小值的求法及簡單應用,會用導數判斷函數的凹凸性和拐點,會求函數圖形水平、鉛直和斜漸近線,會描繪簡單函數的圖形。
6、了解曲率和曲率半徑的概念,會計算曲率和曲率半徑及兩曲線的交角。
7、掌握用羅必塔法則求未定式極限的方法。一元函數積分學
1、理解原函數和不定積分的概念,了解定積分的概念。
2、掌握不定積分的基本公式,不定積分和定積分的性質及定積分中值定理,掌握換元積分法和分部積分法。
3、會求有理函數、三角函數和簡單無理函數的積分。
4、理解變上限積分定義的函數,會求它的導數,掌握牛頓萊布尼茲公式。
5、了解廣義積分的概念並會計算廣義積分。6、掌握用定積分計算一些幾何量和物理量(平面圖形的面積、平面曲線的弧長、旋轉體的體積及側面積、平行截面面積為已知的立體體積、變力作功、引力、壓力等。)
以上就是部分高數必備之術基礎知識的難點要點,以及重要理解的地方,需要你認真學習才可以能掌握

『貳』 高數一的主要考點有哪些

1、一元函數微分學:隱函數求導、曲率圓和曲率半徑;

2、一元積分學:旋轉體的側面積、平面曲線的弧長、功、引力、壓力、質心、形心等;

3、向量代數與空間解析幾何:向量、直線與平面、旋轉曲面、球面、柱面、常用的二次曲面方程及其圖形、投影曲線方程;

4、多元函數微分學:方向導數和梯度、空間曲線的切線與法平面、曲面的切平面和法線;隱函數存在定理。


(2)高數一基礎有哪些擴展閱讀:

高等數學學習方法:

1、提前預習,做好筆記

學習高數需要,提前預習相關內容。把看不懂的地方用問號予以標注,自己獨立思考,如果還是搞不清楚,就把疑問的知識點記下來,帶著疑問去聽課,這樣就會使學習變得主動、深入,增強了聽課的針對性和主動性,會起到事半功倍的效果。

2、課後及時復習並完成作業

復習包括課後復習和階段性復習。課後復習的要點是再次閱讀教材,回想當天所學的概念、定理、公式,把它們徹底弄清楚。對於不明白的地方,要及時向同學或老師請教,切忌不懂裝懂。每章結束後,還要進行階段性復習。對本章的概念、定理、性質、公式進行梳理、歸納、總結,對典型的例題、典型的解題方法和技巧進行小結。

『叄』 大一高數知識點有哪些

大一高數知識點有集合間的基本關系。

1、「包含」關系—子集。

2、相等」關系:A=B (5≥5,且5≤5,則5=5)。

3、不含任何元素的集合叫做空集,記為Φ。

高數一般指高等數學。高等數學是指相對於初等數學和中等數學而言,數學的對象及方法較為繁雜的一部分,中學的代數、幾何以及簡單的集合論初步、邏輯初步稱為中等數學,將其作為中小學階段的初等數學與大學階段的高等數學的過渡。

通常認為,高等數學是由微積分學,較深入的代數學、幾何學以及它們之間的交叉內容所形成的一門基礎學科。主要內容包括:數列、極限、微積分、空間解析幾何與線性代數、級數、常微分方程。工科、理科、財經類研究生考試的基礎科目。

高等數學分為幾個部分為:

1、函數 極限 連續。
2、一元函數微分學。
3、一元函數積分學。
4、向量代數與空間解析幾何。
5、多元函數微分學。
6、多元函數積分學。
7、無窮級數。
8、常微分方程。

『肆』 學高等數學需要哪些基礎知識

第納碰一,函數的基本理論渣茄謹,對於冪函數,指數函數如基,對數函數有比較好的了解。

第二,數列的知識。

第三,最好具有三角函數的知識。其他的知識細節可以慢慢邊學邊補,比如命題邏輯。

『伍』 高等數學包括哪些

問題一:高等數學包含哪些局悔內容,有哪些科目 你好!內容包含:
一、 函數與極限
二、導數與微分
三、導數的應用
四、不定積分
五、定積分及其應用
六、空間解析幾何
七、多元函數的微分學
八、多元函數積分學
九、常微分方程
十、無窮級數
主要包括的科目有:微積分,數理統計等。
其實,高中就有涉及,高數只是深化了一些。
謝謝!

問題二:高數一包括哪些內容 具體專業的數學要求不同的,各個高校可能會有自己相關的調整,最好直接向報考高校咨詢,以下是全國統考數學的分類:
數學一:
1、高等數學(函數、極限、連續、一元函數的微積分學、向量代數與空間解析幾何、多元函數的微積分學、無窮級數、常微分方程);
2、線性代數;
3、概率論與數理統計。
數學二:
1、高等數學(函數、極限、連續、一元函數微積分學、微分方程);
2、線性代數。
數學三:
1、高等數學(函數、極限、連續、一元函數微積分學、多元函數微積分學、無窮級數、常微分方程與差分方程);
2、線性代數;
3、概率論與數理統計。
數學四:
1、高等數學(函數、極限、連續、一元函數微積分學、多元函數微積分學、常微分方程);
2、線性代數;
3、概率論
參考文獻:中國研究生招生信息網

問題三:高等數學包括哪些內容 1. 2005年數學考試大綱的修訂說明與評述
(1) 基於工學、經濟學、管理學門類各學科專業對碩士研究生入學所應具備的數學知識和能力的不同要求,數學統考試卷仍分為數學一、數學二、數學三和數學四。
(2) 數學一、二試卷高等數學部分,「函數、極限、連續」的考試要求的第4條增加「了解初等函數的概念」的要求。
原為「掌握基本初等函數的性質及其圖形」。變為「掌握基本初等函數的性質及其圖形,了解初等函數的概念」。
評述:進一步強調基礎知識點。
(3)
數學一試卷高等數學部分,「多元函數微分學」的考試要求的第6條,數學二試卷高等數學部分,「多元函數微積分學」的考試要求的第3條,將原來的「會用隱函數的求志法則」改為「了解隱函數存在定理,會求多元隱函數的偏導數」。
評述:進一步強調基礎知識點與概念理解的重要性。
(4) 數學三、四試卷高等數學部分,「函數、極限、連續」的考試要求的第3條,將「理解反函數、隱函數的概念」改為「了解反函數、隱函數的概念」,
原為「理解復合函數、反函數、隱函數和分段函數的概念」。變為「理解復合函數及分段函數的概念,了解反函數及隱函數的概念」。
評述:進一步強調基礎知識點。弊臘高
「一元函數微分學」的考試要求的第1條,增加「會求平面曲線的切線方程和法線方程」的要求。
原為「理解導數的概念及可導性與連續性之間的關系,了解導數的幾何意義與經濟意義(含邊際與彈性的概念)」。
變為「理解導數的概念及可導性與連續性之間的關系,了解導數的幾何意義與經濟意義(含邊際與彈性的概念),會求平面曲線的切線方程和法線方程。」
評述:進一步強調基礎知識點,進一步提升對考生能力的要求。
(5)
數學三、四試卷線性代數部分,「線性方程組」的考試要求的第4條改為「4.理解非齊次線性方程組解的結構及通解的概念。5.掌握用初等行變換求解線性方程組的方法」。
原為「4.掌握理解非齊次線性方程組基礎解系的求法,會用其特解及相應的導出組的基礎解系表示非齊次線性方程組的通解」。變為以上的兩條。
評述:進一步提升對考生能力的要求。
(6) 對數學一、三試卷概率論與數理統計部分和數學四試卷概率論部分的一些概念、考試內容和考試要求在文字表述上作了修改,使其更加規范和統一。
(7) 對數學一、二試卷的樣卷進行了修訂。
(8)
對數學一、二、三、四試卷中的考試內容和考試要求的表述更進一步明確、規范和統一,在考試內容部分只列出內容範圍,而將有關內容的要求層次和應用這些內容可以解出的問題在考試要求部分列出。
2.2005年考研數學特點
2005考研數學試卷將進一租尺步加大對考生掌握數學基礎知識的准確性與全面性的考察力度,同時堅固不同知識點綜合交叉運用性的基本能力。就難度而言,會維持2004年的水平。
2004年數學試題是近5年以來較容易也是最基本的一套試題。
2005年大綱維持2004年要求基本不變。只是進一步加強了對基礎性知識點的重視與規范化要求。如:一元微分學中:增加了「接初等函數的概念准確的概念」,「會求平面曲線的切線方程與法線方程」,多元微分學強調了「了解隱函數存在定理,會求多元隱函數的偏導數」,線性代數強調「理解非齊次方程組解的結構及通解的概念」,「掌握用初等行變換求解線性方程組的方法」,等等。准確而全面的概念理解與過硬的基本計算能力,將是2005年考生取勝的關鍵。加強知識的基礎性、系統綜合性與交叉性的訓練,努力提升對知識的洞察力,以不變應萬變,排除誤導,是我們的建議。
關於2005考研試題的特點與結......>>

問題四:考研的高等數學一包括哪些 考研數一一共包括四本書!兩本高數(同濟五版,綠色封皮)線性代數(同濟四版,紫色封皮)概率論與數理統(浙大的三版)這就考研數一用書,不分文理的!

問題五:高數有哪些分類,急求!!!! 高等數學通常分為高數A、高數B、高數C三類。
高數A對應理工類專業(數學專業不學高數,而是學難度更大的數學分析。)
高數B對應經管類專業
高數C對應文史類專業(語言類專業不學高數;法學專業有些學校學高數C,有些學校例如華政不學高數。)
高數B與高數A的區別總體上說就是:
1、A的難度和知識的廣度要高於B,因此A的課時比B要多
2、A主要偏向於理工科的知識結構范圍,B偏向於經濟類的計算
3、一般來說把A都搞得很好了,考B一般也會很好。
4、高數A、B的教學基本要求和歷屆考題高數老師應該會讓你們買。
5、高數A、B是混不過去的,所以上課一定要去,作業一定要自己做。混的話,不管你高中數學有多好,都會掛得很慘的。
6、如果要問高數的具體難度,可以到書店翻一下歷年的伐研題,學校考試不會高於這個難度。
理工類高數包括:
一、與高數B共同內容
1. 函數、極限、連續
2. 一元函數微積分
3. 多元函數微積分
4. 級數
5. 常微分方程
二、A要求但B不要求
(1) 掌握基本初等函數的性質和圖形
(2) 掌握極限存在的二個准則,並會利用它們求極限
(3) 會用導數描述一些簡單的物理量
(4) 了解曲率,曲率半徑的概念,並會計算
(5) 了解求方程近似解的二分法和切線法
(6) 了解曲線的切線和法平面及曲面的切平面和法線的的概念,會求它們的方程
(7) 三重積分
(8) 曲線曲面積分
(9) 向量代數與空間解析幾何
高等數學與高中聯系不大,只有函數、極限和空間向量是從高中過渡的內容。但是函數的基礎一定要打好!否則苦海無邊,到時還要重翻高中課本。

問題六:高等數學包括哪些范圍?有加分!!! 10月19日 09:22 這和您報考學校專業的具體要求有關,數二不考線性代數、數三、數四屬於經濟數學。
1. 2005年數學考試大綱的修訂說明與評述
(1) 基於工學、經濟學、管理學門類各學科專業對碩士研究生入學所應具備的數學知識和能力的不同要求,數學統考試卷仍分為數學一、數學二、數學三和數學四。
(2) 數學一、二試卷高等數學部分,「函數、極限、連續」的考試要求的第4條增加「了解初等函數的概念」的要求。
原為「掌握基本初等函數的性質及其圖形」。變為「掌握基本初等函數的性質及其圖形,了解初等函數的概念」。
評述:進一步強調基礎知識點。
(3)
數學一試卷高等數學部分,「多元函數微分學」的考試要求的第6條,數學二試卷高等數學部分,「多元函數微積分學」的考試要求的第3條,將原來的「會用隱函數的求志法則」改為「了解隱函數存在定理,會求多元隱函數的偏導數」。
評述:進一步強調基礎知識點與概念理解的重要性。
(4) 數學三、四試卷高等數學部分,「函數、極限、連續」的考試要求的第3條,將「理解反函數、隱函數的概念」改為「了解反函數、隱函數的概念」,
原為「理解復合函數、反函數、隱函數和分段函數的概念」。變為「理解復合函數及分段函數的概念,了解反函數及隱函數的概念」。
評述:進一步強調基礎知識點。
「一元函數微分學」的考試要求的第1條,增加「會求平面曲線的切線方程和法線方程」的要求。
原為「理解導數的概念及可導性與連續性之間的關系,了解導數的幾何意義與經濟意義(含邊際與彈性的概念)」。
變為「理解導數的概念及可導性與連續性之間的關系,了解導數的幾何意義與經濟意義(含邊際與彈性的概念),會求平面曲線的切線方程和法線方程。」
評述:進一步強調基礎知識點,進一步提升對考生能力的要求。
(5)
數學三、四試卷線性代數部分,「線性方程組」的考試要求的第4條改為「4.理解非齊次線性方程組解的結構及通解的概念。5.掌握用初等行變換求解線性方程組的方法」。
原為「4.掌握理解非齊次線性方程組基礎解系的求法,會用其特解及相應的導出組的基礎解系表示非齊次線性方程組的通解」。變為以上的兩條。
評述:進一步提升對考生能力的要求。
(6) 對數學一、三試卷概率論與數理統計部分和數學四試卷概率論部分的一些概念、考試內容和考試要求在文字表述上作了修改,使其更加規范和統一。
(7) 對數學一、二試卷的樣卷進行了修訂。
(8)
對數學一、二、三、四試卷中的考試內容和考試要求的表述更進一步明確、規范和統一,在考試內容部分只列出內容範圍,而將有關內容的要求層次和應用這些內容可以解出的問題在考試要求部分列出。
2.2005年考研數學特點
2005考研數學試卷將進一步加大對考生掌握數學基礎知識的准確性與全面性的考察力度,同時堅固不同知識點綜合交叉運用性的基本能力。就難度而言,會維持2004年的水平。
2004年數學試題是近5年以來較容易也是最基本的一套試題。
2005年大綱維持2004年要求基本不變。只是進一步加強了對基礎性知識點的重視與規范化要求。如:一元微分學中常增加了「接初等函數的概念准確的概念」,「會求平面曲線的切線方程與法線方程」,多元微分學強調了「了解隱函數存在定理,會求多元隱函數的偏導數」,線性代數強調「理解非齊次方程組解的結構及通解的概念」,「掌握用初等行變換求解線性方程組的方法」,等等。准確而全面的概念理解與過硬的基本計算能力,將是2005年考生取勝的關鍵。加強知識的基礎性、系統綜合性與交叉性......>>

問題七:大專高等數學(一)包含哪些內容 大專高等數學(一),指的是自學考試大專所用的高等數學教材。包含的內容有:
1、函數。包括初等代數、 *** 與邏輯符號等預備知識,函數的概念與圖形,三角函數、指數函數、對數函數,以及經濟學中的常用函數、需求函數與供給函數、成本函數、收益函數與利潤函數。
2、極限與連續。包括函數極限的概念、函數極限的性質與運算,無窮小量與無窮大量,連續函數的概念與性質。
3、導數與微分。包括導數的運算,幾種特殊函數的求導法、高階導數。
4、微分中值定理和導數的應用。包括微分中值定理,洛必達法則,函數單調性的判定,函數的極值及其求法,函數的最值及其應用,曲線的凹凸性和拐點,曲線的漸近線,導數的經濟分析中的應用。
5、一元函數積分學。包括原函數與不定積分的概念,幾本積分公式,換元積分法,分部積分法,微分方程初步,定積分的概念及其基本性質,微積分基本定理,定積分的換元積分法和分部積分法,反常積分,定積分的應用。
6、多元函數微積分。包括多元函數的基本概念,偏導數,全微分,多元復合函數的求導法則,隱函數的求導法則,二元函數的極值,二重積分。

『陸』 大學高等數學要掌握哪些基礎知識啊

大學數學主要是由極限貫穿的,要對極限的思維建立一個比較強的概念。

主要掌握的基礎知識是導數,包括偏導;然後是積分。

縱觀大學數學上下冊(同濟5版)無非就是圍繞導數,積分展開的。正確理解和運用導數和積分的基本概念和定理尤為重要~!

『柒』 零基礎學高等數學需要哪些基礎知識

鄙人剛剛接觸高數,這個是很大的一門學科領域非常廣的一級學科...數學分析、高等代數、解析幾何、概率論與數理統計這個是基本是入門主線任務,支線任務有復變函數、常微分、運籌、最優化,數學模型。鄙人也不打算繼續說下去了僅供你了解一下,其次還有很多應用數學領域很多東西...高數挑你能用到的學,學不是目的不然就學傻了。(以上是本科高等數學內容,參考的數學系教學科目)高數具體的鄙人也還在懵逼階段,怎麼學鄙人只能說不知道。

『捌』 高等數學包括哪些內容

包括微積分、代數學、幾何學以及它們之間的交叉內容。高等數學的主要學習內容包括數列、極限、微積分、空間解滲森析幾何與線性代數、級數、常微分方程。

作為一門基礎科學,高等數學有其固有的特點,這就是高度的抽象性、嚴密的邏輯性和廣泛的應用性。抽象性和計算性是數學最基本、最顯著的特點,有了高度抽象和統一,我們才能深入地揭示其本質規律,才能使之得到更廣泛的應用。

大學數學學內容:

1、極限

極限思想是微積分的基本思想,是數學分析中的一系列重要概念,如函數的連續性、導數(為讓喊哪0得到極大值)以及定積分等等都是藉助於極限來定義的。極限是解決高等數學問題的基坦碼礎。

2、微積分

微積分是高等數學中研究函數的微分、積分以及有關概念和應用的數學分支。它是數學的一個基礎學科,在許多領域都有重要的應用。

3、空間解析幾何

藉助矢量的概念可使幾何更便於應用到某些自然科學與技術領域中去,因此,空間解析幾何介紹空間坐標系後,緊接著介紹矢量的概念及其代數運算。