① 生物遺傳和變異的基礎是什麼
細胞增殖是生長發育的基礎,受精卵從形成開始就在不斷的分裂分化,即分裂成更多的細胞,分化成各種組織。
遺傳變異的基礎是基因突變和基因重組,這就涉及到繁殖方面,從受精卵開始,基因就在不停的隨著細胞的分裂分化而復制,在此過程中會出現基因突變,從而影響到個體生理上的變化,若這種現象發生在生殖細胞就有遺傳的可能。
醫學應用
變異是生物的一般特性。甚至在人類尚未發現病毒以前,就已開始運用變異現象製造疫苗。例如1884年,巴斯德利用兔腦內連續傳代的方法,將狂犬病的街毒(強毒)轉變為固定毒。
這種固定毒保留了原有的免疫原性,但毒力發生了變異——非腦內接種時,對人和犬等的毒力明顯降低,因而成功地用作狂犬病的預防制劑。此後,在許多動物病毒方面,應用相同或類似的方法獲得了弱毒株,創制了許多優質的疫苗。
選育自然弱毒變異株的工作,也取得了巨大成就。但是有關病毒遺傳變異機理的認識,則只在近幾十年來才有顯著的進展。這不僅是病毒學本身的躍進,也是其它學科,特別是生物化學、分子生物學、免疫學以及電子顯微鏡、同位素標記等新技術飛速發展的結果。
② 高中生物必修二的全部知識點!!
生物必修2知識點
必修②
第一章第一節
1.孟德爾通過分析 豌豆雜交實驗 的結果,發現了 生物遺傳 的規律。
2.孟德爾在做雜交實驗時,先除去未成熟花的全部雄蕊,這叫做 去雄 。
3.一種生物的同一性狀的不同表現類型,叫做 相對性狀 。
4.孟德爾把F1顯現出來的性狀,叫做 顯性性狀 ,未顯現出來的性狀叫做 隱性性狀 。在雜種後代中,同時出現 顯性性狀 和 隱性性狀 的現象叫做 性狀分離 。
5.孟德爾對分離現象的原因提出了如下假說:
(1)生物的性狀是由 遺傳因子 決定的,其中決定顯現性狀的為 顯性遺傳因子 ,用 大寫字母 表示,決定隱性性狀的為 隱性遺傳因子 ,用 小寫字母 表示。
(2)體細胞中的 遺傳因子 是成對存在的, 遺傳因子 組成相同的個體叫做 純合子 , 遺傳因子 組成不同的個體叫做 雜合子 。
(3)生物體在形成生殖細胞——配子時, 成對的遺傳因子 彼此分離,分別進入 不同的配子 中,配子中只含有 每對遺傳因子 的一個。
(4)受精時, 雌雄配子 的結合是隨機的。
6.測交是讓 F1 與 隱性純合子 雜交。
7.孟德爾第一定律又稱 分離定律 。在生物的體細胞中,控制同一性狀的 遺傳因子 成對存在的,不相融合,在形成配子時,成對的 遺傳因子 發生分離,分離後的 遺傳因子 分別進入不同配子中,隨 配子 遺傳給後代。
第一章第二節
1.孟德爾用純種黃色圓粒豌豆和純種綠色皺粒豌豆作親本雜交,無論 正交 還是 反交 ,結出的種子(F1)都是 黃色圓粒 。這表明 黃色 和 圓粒 是顯性性狀, 綠色 和 皺粒 是隱性性狀。
2.孟德爾讓黃色圓粒的F1自交,在產生的F2中發現了黃色圓粒和綠色皺粒,還出現了親本所沒有的性狀組合 綠色圓粒 和 黃色皺粒 。
3.純種黃色圓粒和純種綠色皺粒豌豆的遺傳因子組成分別是YYRR和yyrr,它們產生的F1遺傳因子組成是 YyRr ,表現為 黃色圓粒 。
4.孟德爾兩對相對性狀的雜交實驗中,F1(YyRr)在產生配子時,每對遺傳因子彼此 分離 ,不同對的遺傳因子可以 自由組合 。F1產生的雌配子和雄配子各有4種: YR、Yr、yR、yr ,數量比例是: 1:1:1:1 。受精時,雌雄配子的結合是 隨機 的,雌、雄配子結合的方式有 16 種,遺傳因子的結合形式有 9 種: YYRR、YYRr、YYrr、YyRR、YyRr、Yyrr、yyRR、yyRr、yyrr 。性狀表現有 4 種: 黃色圓粒、黃色皺粒、綠色圓粒、綠色皺粒 ,它們之間的數量分比是 9:3:3:1 。
5.讓子一代F1(YyRr)與隱性純合子(yyrr)進行雜交,無論是F1作 母本 ,還是作 父本 ,後代表現型有 4 種: 黃色圓粒、黃色皺粒、綠色圓粒、綠色皺粒 ,它們之間的比例是 9:3:3:1 ,遺傳因子的組合形式有 9 種: YYRR、YYRr、YYrr、YyRR、YyRr、Yyrr、yyRR、yyRr、yyrr 。
6.孟德爾第二定律也叫做 自由組合定律 ,控制不同性狀的遺傳因子的 分離 和 組合 是互不幹擾的,在形成配子時,決定 同一性狀 的遺傳因子彼此分離,決定 不同性狀的遺傳因子 自由結合。
7.1909年,丹麥生物學家 約翰遜 給孟德爾的「遺傳因子」一詞起名叫做 基因 ,並提出了 表現型 和 基因型 的概念。
8.表現型指 生物個體表現出來的性狀 ,控制 相對性狀 的基因叫做等位基因,與表現型有關的基因組成叫做 基因型 。
第二章第一節
1.減數分裂是進行 有性生殖 的生物在產生 成熟生殖細胞 時,進行的染色體數目 減半 的細胞分裂。在減數分裂過程中,染色體只復制 一次 ,而細胞分裂 兩次 ,減數分裂的結果是 成熟生殖細胞 中的染色體數目比 原始生殖的細胞 的減少一半。
2.精原細胞是 原始 的雄性生殖細胞,每個體細胞中的染色體數目都與 體細胞 的相同。
3.在減數第一次分裂的間期,精原細胞的體積增大,染色體復制,成為初級精母細胞,復制後的每條染色體都由兩條 姐妹染色單體 構成,這兩條 姐妹染色單體 由同一個 著絲點 連接。
4.配對的兩條染色體,形狀和大小一般都相同,一條來自 父方 ,一條來自 母方 ,叫做 同源染色體 ,同源染色體 兩兩配對的現象叫做聯會。
5.聯會後的每對同源染色體含有四條 染色單體 ,叫做 四分體 。
6.配對的兩條同源染色體彼此分離,分別向細胞的兩極移動發生在 減數第一次分裂 時期。
7.減數分裂過程中染色體的減半發生在 減數第一次分裂。
8.每條染色體的著絲點分裂,兩條姐妹染色體也隨之分開,成為兩條染色體發生在 減數第二次分裂 時期。
9.在減數第一次分裂中形成的兩個次級精母細胞,經過減數第二次分裂,形成了四個 精細胞 ,與初級精母細胞相比,每個精細胞都含有數目 減半 的染色體。
10.初級卵母細胞經減數第一次分裂,形成大小不同的兩個細胞,大的叫做 次級卵母細胞 ,小的叫做 極體 , 次級卵母細胞 進行第二次分裂,形成一個大的 卵細胞 和一個小的 極體 ,因此一個初級卵母細胞經減數分裂形成一個 卵細胞 和三個 極體 。
11.受精作用是 卵細胞 和 精子 相互識別,融合成為 受精卵 的過程。
12.經受精作用受精卵中的染色體數目又恢復到 體細胞 中的數目,其中有一半的染色體來自 精子(父方),另一半來自 卵細胞(母方) 。
第二章第二節
1.基因與染色體行為存在著明顯的平行關系。
(1)基因在雜交過程中保持 完整性 和 獨立性 ,染色體在配子形成和受精過程中,也有相對穩定的 形態結構 。
(2)在體細胞中基因 成對 存在,染色體也是 成對 的。在配子中基因只有 一個 ,同樣,染色體也只有 一條 。
(3)體細胞中成對的基因一個來自 父方 ,一個來自 母方 ,同源染色體也是。
2.果蠅的一個體細胞中有多對染色體,其中 3 對是常染色體, 1 對是性染色體,雄果蠅的一對性染色體是 異型 的,用 XY 表示,雌果蠅一對性染色體是 同型 的,用 XX 表示。
3.紅眼的雄果蠅基因型是 XWY ,紅眼的雌果蠅基因型是 XWXw /XWXW ,白眼的雄果蠅基因型是 XwY ,白眼的雌果蠅基因型是 XwXw 。
4.美國生物學家 摩爾根 和他的學生們經過十多年的努力,發現了說明基因位於 染色體 上的相對位置的方法,並繪出了第一個果蠅各種基因在 染色體 上相對位置圖,說明基因在 染色體 上呈 線性 排列。
5.基因分離定律的實質是:在雜合體的細胞中,位於一對同源染色體上的 等位基因 ,具有一定的 獨立性 ,在分裂形成配子的過程中, 等位基因 會隨同源染色體分開而分離,分別進入兩個配子中,獨立地隨配子遺傳給後代。
6.基因自由組合定律的實質是:位於非同源染色體上的 非等位基因 的分離或組合是互不幹擾的,在減數分裂過程中,同源染色體上的 等位基因 彼此分離的同時,非同源染色體上的 非等位基因 自由組合。
第二章第三節
1.位於性染色體上的 基因 控制的性狀在遺傳上總是和 性別 相關聯,這種現象叫做 伴性遺傳 。
2.伴X隱性遺傳的遺傳特點:
(1)隱性致病基因及其等位基因只位於 X 染色體上。
(2)男性患者 多於 女性患者。
(3)往往有 隔代 遺傳現象。
(4)女患者的 兒子 一定患病。(母病子必病)
3.伴X顯性遺傳的遺傳特點:
(1)顯性的致病基因及其等位基因只位於 X 染色體上。
(2)女性患者 多於 男性患者。
(3)具有世代連續性。
(4)男患者的 女兒 一定患病。(父病女必病)
4.表示一個家系的圖中,通常以正方形代表 男性 ,圓形代表 女性 ,以羅馬數字代表(如I、Ⅱ等) 代 ,以阿拉伯數字表示(如1、2等) 個體 。
5.人類的X染色體和Y染色體無論在 大小 和攜帶的 基因 種類上都不一樣,X染色體上攜帶著許多基因,Y染色體只有X染色體大小的1/5左右,攜帶的基因比較 少 。
第三章第一節
1.染色體是由 DNA 和蛋白質組成的,其中 DNA 是一切生命現象的體現者。在有絲分裂、 受精作用 和減數分裂 過程中具有重要的連續性。
2.DNA是遺傳物質的證據是 肺炎雙球菌的轉化 實驗和 噬菌體侵染細菌 實驗。
3.肺炎雙球菌的轉化試驗:
(1)實驗目的: 證明什麼事遺傳物質 。
(2)實驗材料: S型細菌、R型細菌 。
菌落 菌體 毒性
S型細菌 表面光滑 有莢膜 有
R型細菌 表面粗糙 無莢膜 無
(3)過程: ① R 型活細菌注入小鼠體內小鼠不死亡。
② S 型活細菌注入小鼠體內小鼠死亡。
③殺死後的 S 型細菌注入小鼠體內小鼠不死亡。
④無毒性的 R 型細菌與加熱殺死的 S 型細菌混合後注入小鼠體內,小鼠死亡。
⑤從S型活細菌中提取 DNA 、蛋白質和多糖等物質,分別加入R型活細菌中培養,發現只有加入 DNA ,R型細菌才能轉化為S型細菌。
(4)結果分析:①→④過程證明:加熱殺死的S型細菌中含有一種「轉化因子」;⑤過程證明:轉化因子是 DNA 。
結論: DNA 是遺傳物質。
4.噬菌體侵染細菌的實驗:
(1)實驗目的: 噬菌體的遺傳物質是DNA還是蛋白質 。
(2)實驗材料: 噬菌體 。
(3)過程:① T2噬菌體的 蛋白質 被35S標記,侵染細菌。
② T2噬菌體內部的 DNA 被32P標記,侵染細菌。
(4)結果分析:測試結果表明:侵染過程中,只有 DNA 進入細菌,而35S未進入,說明只有親代噬菌體的 DNA 進入細胞。子代噬菌體的各種性狀,是通過親代的 DNA 遺傳的。 DNA 才是真正的遺傳物質。
5.RNA是遺傳物質的證據:
(1)提取煙草花葉病毒的 蛋白質 不能使煙草感染病毒。
(2)提取煙草花葉病毒的 RNA 能使煙草感染病毒。
6.結論 :絕大多數生物的遺傳物質是 DNA , DNA 是主要的遺傳物質 。極少數的病毒的遺傳物質不是 DNA ,而是 RNA 。
第三章第二節
1.DNA是一種 高分子 化合物,每個分子都是由成千上百個 4 種脫氧核苷酸聚合而成的長鏈。
2.結構特點:①由兩條脫氧核苷酸鏈 反向 平行盤旋而成的 雙螺旋 結構。
②外側:由 脫氧核糖 和 磷酸 交替連接構成基本骨架。
③內側:兩條鏈上的鹼基通過 氫鍵連接 形成鹼基對。鹼基對的形式遵循 鹼基互補配對原則 ,即A一定要和 T 配對(氫鍵有 2 個),G一定和 C 配對(氫鍵有 3 個)。
3.雙鏈DNA中腺嘌呤(A)的量總是等於 胸腺嘧啶(T)的量.鳥嘌呤(G)的量總是等於 胞嘧啶(C)的量。
第三章第三節
1.DNA的復制概念:是以 親代DNA 為模板合成 子代DNA 的過程。
2.時間:DNA分子復制是在細胞有絲分裂的 間期 和減數第一次分裂的 間期 ,是隨著 染色體 的復制來完成的。
3.場所: 細胞核 。
4.過程:
(1)解旋:DNA首先利用線粒體提供的 能量 在 解旋酶 的作用下,把兩條螺旋的雙鏈解開。
(2)合成子鏈:以解開的每一段母鏈為 模板 ,以游離的四種脫氧核苷酸為原料 ,遵循 鹼基互補配對 原則,在有關酶的作用下,各自合成與母鏈互補的子鏈。
(3)形成子代DNA:每一條子鏈與其對應的 模板 盤旋成雙螺旋結構,從而形成 2 個與親代DNA完全相同的子代DNA。
5.特點:
(1)DNA復制是一個 邊解旋邊復制 的過程。
(2)由於新合成的DNA分子中,都保留了原DNA的一條鏈,因此,這種復制叫 半保留復制 。
6.條件:DNA分子復制需要的模板是 DNA母鏈 ,原料是 游離的脫氧核酸 ,需要能量ATP和有關的酶。
7.准確復制的原因:
(1)DNA分子獨特的 雙螺旋結構 提供精確的模板。
(2)通過 鹼基互補配對 保證了復制准確無誤。
8.功能:傳遞 遺傳信息 。DNA分子通過復制,使親代的遺傳信息穿給子代,從而保證了 遺傳信息 的連續性。
第三章第四節
1.一條染色體上有 1 個DNA分子,一個DNA分子上有 許多 個基因,基因在染色體上呈現 線形 排列。每一個基因都是特定的 DNA 片段,有著特定的 遺傳效應 ,這說明DNA中蘊涵了大量的 遺傳信息 。
2.概念:DNA分子上分布著多個基因,基因是具有 遺傳效應的DNA 片段,是決定生物性狀的 遺傳單位 。
3.結構:基因的 脫氧核苷酸 排列順序,即鹼基對的排列順序。不同的基因含有不同的 遺傳信息 。
4.DNA能夠儲存足夠量的遺傳信息,遺傳信息蘊藏在 4種鹼基的排列順序 之中,構成了DNA分子的 多樣性 ,而鹼基的特定的排列順序,又構成了每一個DNA分子的 特異性 。
第四章第一節
1.RNA是在細胞核中,以 DNA的一條鏈 為模板合成的,這一過程稱為 轉錄 ;合成的RNA有三種: 信使RNA(mRNA) , 轉運RNA(tRNA) , 核糖體RNA(rRNA) 。
2.RNA與DNA的不同點是:五碳糖是 核糖而不是脫氧核糖 ,鹼基組成中有 鹼基U(尿嘧啶)而沒有T(胸腺嘧啶);從結構上看,RNA一般是 單鏈 ,而且比DNA短。
3.翻譯是指游離在細胞質中的各種 氨基酸 ,以 mRNA為模板,合成具有一定氨基酸順序的 蛋白質 的過程。
4.mRNA上3個相鄰的鹼基決定一個氨基酸。每3個這樣的鹼基稱為1個 密碼子 。
5.蛋白質合成的「工廠」是 細胞質 ,搬運工是 轉運RNA(tRNA) 。每種tRNA只能轉運並識別 1 種氨基酸,其一端是 攜帶氨基酸 的部位,另一端有3個鹼基,稱為 反密碼子 。
第四章第二節
1.1957年,克里克提出中心法則 :遺傳信息可以從 DNA 流向 DNA ,即DNA的自我復制 ;也可以從 DNA流向 RNA ,進而流向蛋白質,即遺傳信息的轉錄和翻譯。但是,遺傳信息不能從 蛋白質 傳遞到 蛋白質 ,也不能從蛋白質流向 RNA或DNA 。遺傳信息從RNA流向 RNA 以及從RNA流向 DNA 兩條途徑,是中心法則的補充。
2.基因通過控制 酶 的合成來控制代謝過程,進而控制生物體的性狀。
3.基因還能通過控制 蛋白質的結構 直接控制生物體的性狀。
4.基因與基因、 基因與基因產物 、基因與環境之間存在著復雜的相互作用,精細的調控著生物體的性狀。
第四章第三節
1.克里克的實驗證明:遺傳密碼中 3 個鹼基編碼1個氨基酸,遺傳密碼從一個固定的起點開始,以 非重疊 的方式閱讀,編碼之間沒有分隔符。
2.尼倫伯格和馬太採用蛋白質體外合成技術,在試管中只加入苯丙氨酸,在加入除去了 DNA 和 mRNA的細胞提取液及人工合成的 RNA ,結果在試管中出現了多聚苯丙氨酸的肽鏈。
第五章第一節
1.DNA分子中發生鹼基對的 替換、增添和缺失 ,而引起的基因結構的改變叫基因突變。
2.基因突變有如下特點:在生物界普遍存在, 隨機發出的、不定向的 ,頻率很低。
3.基因突變的意義在於:它是 新基因 產生的途徑,是 生物變異 的根本來源,是 生物進化 的原材料。
4.基因重組是指 在生物體進行有性生殖的過程中,控制不同形狀的基因的重新組合 。
第五章第二節
1.染色體變異包括 結構 變異和 數目 變異。
2.染色體結構的改變,會使排列在染色體上的基因的 數目或排列順序 發生改變,從而導致性狀的變異。
3.染色體數目變異可分為兩類:一類是 細胞內個別染色體的增加或減少 ,另一類是 細胞內染色體數目以染色體組的形式成倍地增長或減少 。
4.染色體組是指細胞中的一組 非同源 染色體,在形態和功能上各不相同,攜帶著控制生物生長發育的全部遺傳信息。
5.人工誘導多倍體最常用而且最有效的方法是用 秋水仙素來處理萌發的種子或幼苗 ,其作用機理是能抑制 紡錘體 的形成,導致染色體不能移向細胞兩極,染色體完成了復制但不能 減半 ,從而引起細胞內染色體數目加倍。
6.單倍體是指 體細胞中含有本物種配子染色體數目 的個體,在生產上常用於 培育純種 。
第五章第三節
1.人類遺傳病通常是指由於遺傳物質改變而引起的人類疾病,主要可以分為 單基因遺傳病 、 多基因遺傳病 和 染色體異常遺傳病 三大類。
2.單基因遺傳病是指受 1 對等位基因控制的遺傳病,可能由 顯 性致病基因引起,也可能由 隱 性致病基因引起。
3.多基因遺傳病是指受 2 對以上的等位基因控制的遺傳病,主要包括一些 先天性發育異常 和一些常見病,在群體中的發病率較高。
4.染色體異常遺傳病由染色體異常引起,如 21三體綜合征 ,又叫先天性愚型,患者比正常人多了一條21號染色體,是由於 減數分裂 時21號染色體不能正常分離而形成。
5.人類基因組計劃正式啟動於1990年,目的是測定 人類基因組的全部DNA 序列,解讀其中包含的遺傳信息。
第六章第一節
1.雜交育種是將兩個或多個品種的 優良性狀 通過 交配 集中在一起,再經過 選擇和培育 ,獲得新品種的方法,它依據的主要遺傳學原理是 基因重組 。
2.誘變育種是利用 物理因素 (如 X射線 、 γ射線 、 紫外線 、 激光 等)或 化學因素 (如 亞硝酸 、硫酸二乙酯 等)來處理生物,使生物發生 基因突變 。其優點是 提高突變率、短時間內獲得更多的優良變異類型、抗病力強、產量高、品質好 。
第六章第二節
1.基因工程又叫 基因拼接技術 或 DNA重組技術 。通俗地說,就是按照人們的意願把一種生物的 某種基因 提取出來,加以 修飾改造 ,然後放到 另一種生物的細胞里 , 定向 地改造生物的遺傳技術。
2.基因工程最基本的操作工具是基因的剪刀即 限制性核酸內切酶 (簡稱 限制酶 );基因的針線即 DNA連接酶 ;基因的運載體常用 質粒 、 噬菌體 、 動植物病毒 等。
3.基因工程的操作一般經歷四個步驟 提取目的基因 、 目的基因與運載體結合 、 將目的基因導入受體細胞 、 目的基因的表達和檢測 。
4.抗蟲基因作物的使用,不僅減少了 農葯的用量 ,大大降低了 生產成本 ,而且還減少了 農葯對環境的污染 。
5.基因工程生產葯品的優點是 高效率 、 高質量 、 低成本 。
6.目前關於轉基因生物和轉基因產品的安全性,有兩種觀點,一種觀點是 轉基因生物和轉基因食品不安全,要嚴格控制 ;另一種觀點是 轉基因生物和轉基因食品是安全的,應該大范圍推廣 。
第七章第一節
1.歷史上第一個提出比較完整的進化學說的是法國的博物學家 拉馬克 。他的基本觀點是地球上所有的生物都不是 神造的 ,而是由 更古老的生物進化 來的;生物是由 低等 到 高等 逐漸進化的;生物的各種適應性特徵的形成都是由於 用進廢退 和 獲得性遺傳 。 用進廢退和獲得性遺傳 ,這是生物不斷進化的主要原因。
2.達爾文提出了以 自然選擇 為中心的進化論,它揭示了生命現象的統一性是由於 所有的生物都有共同的祖先 ,生物的多樣性是 進化 的結果。
3.由於受到當時科學發展水平的限制,達爾文不能解釋 遺傳和變異 ;他對生物進化的解釋也僅限於 個體水平 。
第七章第二節
1.現代生物進化理論的主要內容包括:
(1) 種群是生物進化的基本單位 ;
(2) 突變和基因重組產生進化的原材料 ;
(3) 自然選擇決定生物進化的方向 ;
(4) 隔離導致新物種的形成 。
2.種群是生活在一定區域中的 同種生物的全部個體 。
3.種群的基因庫是該種群中 全部個體所含有的全部基因 。
4.可遺傳的變異來源於 基因突變 、 基因重組 和 染色體變異 ,其中 基因突變 和 染色體變異 統稱為突變。基因突變產生新的 等位基因 ,就可能使種群的基因頻率發生變化。 突變和重組 提供了生物進化的原材料。
5.在自然選擇的作用下,種群的基因頻率會發生 定向 改變,導致生物朝著 一定 的方向不斷進化。
6.物種是能夠在自然狀態下 相互交配 並且 產生可育後代 的一群生物。
7.隔離是 不同種群 的個體,在自然條件下 基因不能自由交流 的現象。常見的隔離有 生殖隔離 和 地理隔離 。
8.生殖隔離即不同物種之間一般是 不能相互交配 的,即使 交配成功 也不能 產生可育後代 。
9.地理隔離即同一種生物由於 地理上的障礙而分成不同的種群,使得種群間不能發生基因交流 的現象。
10.共同進化是指 不同物種 之間、 生物與無機環境 之間在相互影響中不斷進化和發展。
11.生物多樣性包括三個層次的內容: 基因 多樣性、 物種 多樣性和 生態系統 多樣性。
③ 高中生物要學哪些內容
一、分子與細胞
1.細胞的組成元素及化合物
2.細胞的基本結構(細胞膜、細胞器、細胞核)
3.細胞的新陳代謝(物質進出細胞和細胞內能量變化,包括光合作用和呼吸作用等)
4.細胞的生命歷程(分裂、分化、衰老、凋亡、癌變)
二、遺傳與進化
1.遺傳的基本定律(基因分離定律和自由組合定律)
2.遺傳的細胞基礎(減數分裂和受精作用、染色體等)
3.遺傳的分子基礎(DNA、基因等)
4.遺傳與性狀的關系(基因的表達)
5.生物的變異(基因突變、染色體變異等)
6.遺傳與變異在實踐中的應用(育種和基因工程)
7.生物進化理論簡介。
三、穩態與環境
1.多細胞生物體內環境的穩態及維持(內環境及其穩態的調節)
2.生態系統的穩態(種群和群落、生態系統的結構和功能、環境保護)
選修一、二、三限於篇幅就不贅述。
④ 遺傳穩定性分子生物學的基礎是什麼,遺傳變異的基礎是什麼
DNA的雙螺旋結構 基因突變和基因重組
⑤ 遺傳的物質基礎是什麼
遺傳的物質基礎
1.遺傳物質的主要載體——染色體
染色體在細胞的有絲分裂、減數分裂和受精過程中能夠保持一定的穩定性和連續性。這是最早觀察到的染色體與遺傳有關的現象。染色體的主要成分是
DNA和蛋白質。染色體是遺傳物質的主要載體,因為絕大部分的遺傳物質(DNA)是在染色體上的。也有少量的DNA在線粒體和葉綠體中,所以線粒體和葉綠體被稱為遺傳物質的次要載體。
2.DNA是遺傳物質的證據
DNA是遺傳物質最直接的證據是噬菌體侵染細菌的實驗,此外還有細菌轉化實驗等。
3.DNA的結構、復制及基因控制蛋白質的生物合成
⑥ 高中生物目錄。最好詳細一些 ,謝謝
必修一:分子與細胞
第一章:走進細胞
第一節:從生物圈到細胞 ;
第二節 細胞的多樣性和統一性;
第二章:組成細胞的分子
第一節 細胞中的元素和化合物;
第二節 細胞活動的主要承擔者;
第三節 遺傳信息的攜帶者
第四節 細胞中的糖類和脂質 ;
第五節 細胞中的有機物
第三章:細胞的基本結構
第一節 細胞膜------系統的邊界;
第二節 細胞器-----系統內的分工合作;
第三節 細胞核----系統的控制中心
第四章:細胞的物質輸入和輸出
第一節 物質跨膜運輸的實例;
第二節 生物膜的流動鑲嵌模型
第三節 物質跨膜運輸的方式
第五章 細胞的能量供應和利用
第一節降低化學反應活化能的酶 ;
第1.1節 酶的作用和本質 ;
第1.2節 酶的特性;
第二節 細胞的能量「通貨」-----ATP;
第三節 ATP的主要來源------細胞呼吸;
第四節 能量之源-----光與光合作用;
第4.1節 捕獲光能的色素和結構;
第4.2節 光合作用的原理和應用
第六章 細胞的生命歷程
第一節 細胞的增殖;
第二節 細胞的分化;
第三節 細胞的衰老和凋亡;
第四節 細胞的癌變
必修二:遺傳與進化
第一章 遺傳因子的發現
第一節 孟德爾的豌豆雜交實驗(一)
第二節 孟德爾的豌豆雜交實驗(二)
第二章 基因和染色體的關系
第一節 減數分裂和受精作用
第二節 基因在染色體上
第三節 伴性遺傳
第三章 基因的本質
第一節 DNA是主要的遺傳物質
第二節 DNA分子的結構
第三節 DNA的復制
第四節 基因是有遺傳效應的DNA片段
第四章 基因的表達
第一節 基因指導蛋白質的合成
第二節 基因對性狀的控制
第三節 遺傳密碼的破譯(選學)
第五章 基因突變及其他變異
第一節 基因突變和基因重組
第二節 染色體變異
第三節 人類遺傳病
第六章 從雜交育種到基因工程
第一節 雜交育種與誘變育種
第二節 基因工程及其應用
第七章 現代生物進化理論
第一節 現代生物進化理論的由來
第二節 現代生物進化理論的主要內容
一 種群基因頻率的改變和生物進化
二 隔離與物種的形成
三 共同進化與生物多樣性的形成
必修三:穩態與環境
第一章 人體的內環境與穩態
第一節 細胞的生活環境
第二節 內環境穩態的重要性
第二章 動物和人體生命活動的調節
第一節 通過神經系統的調節
第二節 通過激素的調節
第三節 神經調節與液體調節的關系
第四節 免疫調節
第三章 植物激素的調節
第一節 植物生長素的發現
第二節 生長素的生理作用
第三節 其他植物激素
第四章 種群和群落
第一節 種群的特徵
第二節 種群數量的變化
第三節 種群的結構
第四節 群落的演替
第五章 生態系統及其穩定性
第一節 生態系統的結構
第二節 生態系統的能量流動
第三節 生態系統的物質循環
⑦ 2020年微山縣教師招聘面試初中生物考的哪一節課
咨詢記錄 · 回答於2021-08-05
⑧ 高考生物知識點
第一節、組成生物體的化學元素
名詞:1、微量元素:生物體必需的,含量很少的元素。如:Fe(鐵)、Mn(門)、B(碰)、Zn(醒)、Cu(銅)、Mo(母) ,巧記:鐵門碰醒銅母(驢)。2、大量元素:生物體必需的,含量占生物體總重量萬分之一以上的元素。如:C (探)、 0(洋)、H(親)、N(丹)、S(留)、P(人people)、Ca(蓋)、Mg(美)K(家) 巧記:洋人探親,丹留人蓋美家。3、統一性:組成細胞的化學元素在非生物界都可以找到,這說明了生物界與非生物界具有統一性。4、差異性 :組成生物體的化學元素在細胞內的含量與在非生物界中的含量明顯不同,說明了生物界與非生物界存在著差異性。
語句:1、地球上的生物現在大約有200萬種,組成生物體的化學元素有20多種。2、生物體生命活動的物質基礎是指組成生物體的各種元素和化合物。3、組成生物體的化學元素的重要作用:① C、H、O、N、P、S 6種元素是組成原生質的主要元素,大約占原生質的97%。②.有的參與生物體的組成。③有的微量元素能影響生物體的生命活動(如:B能夠促進花粉的萌發和花粉管的伸長。當植物體內缺B時,花葯和花絲萎縮,花粉發育不良,影響受精過程。)
第二節、組成生物體的化合物
名詞:1、原生質:指細胞內有生命的物質,包括細胞質、細胞核和細胞膜三部分。不包括細胞壁,其主要成分為核酸和蛋白質。如:一個植物細胞就不是一團原生質。2、結合水:與細胞內其它物質相結合,是細胞結構的組成成分。7、自由水:可以自由流動,是細胞內的良好溶劑,參與生化反應,運送營養物質和新陳代謝的廢物。8、無機鹽:多數以離子狀態存在,細胞中某些復雜化合物的重要組成成分(如鐵是血紅蛋白的主要成分),維持生物體的生命活動(如動物缺鈣會抽搐),維持酸鹼平衡,調節滲透壓。9、糖類有單糖、二糖和多糖之分。a、單糖:是不能水解的糖。動、植物細胞中有葡萄糖、果糖、核糖、脫氧核糖。b、二糖:是水解後能生成兩分子單糖的糖。植物細胞中有蔗糖、麥芽糖,動物細胞中有乳糖。c、多糖:是水解後能生成許多單糖的糖。植物細胞中有澱粉和纖維素(纖維素是植物細胞壁的主要成分)和動物細胞中有糖元(包括肝糖元和肌糖元)。10、可溶性還原性糖:葡萄糖、果糖、麥芽糖等。11、脂類包括:a、脂肪(由甘油和脂肪酸組成,生物體內主要儲存能量的物質,維持體溫恆定。)b、類脂(構成細胞膜、線立體膜、葉綠體膜等膜結構的重要成分)c、固醇(包括膽固醇、性激素、維生素D等,具有維持正常新陳代謝和生殖過程的作用。)12、脫水縮合:一個氨基酸分子的氨基(-NH2)與另一個氨基酸分子的羧基(-COOH)相連接,同時失去一分子水。13、肽鍵:肽鏈中連接兩個氨基酸分子的鍵(-NH-CO-)。14、二肽:由兩個氨基酸分子縮合而成的化合物,只含有一個肽鍵。15、多肽:由三個或三個以上的氨基酸分子縮合而成的鏈狀結構。有幾個氨基酸叫幾肽。16、肽鏈:多肽通常呈鏈狀結構,叫肽鏈。17、氨基酸:蛋白質的基本組成單位 ,組成蛋白質的氨基酸約有20種,決定20種氨基酸的密碼子有61種。氨基酸在結構上的特點:每種氨基酸分子至少含有一個氨基(-NH2)和一個羧基(-COOH),並且都有一個氨基和一個羧基連接在同一個碳原子上(如:有-NH2和-COOH但不是連在同一個碳原子上不叫氨基酸)。R基的不同氨基酸的種類不同。18、核酸:最初是從細胞核中提取出來的,呈酸性,因此叫做核酸。核酸最遺傳信息的載體,核酸是一切生物體(包括病毒)的遺傳物質,對於生物體的遺傳變異和蛋白質的生物合成有極其重要的作用。19、脫氧核糖核酸(DNA):它是核酸一類,主要存在於細胞核內,是細胞核內的遺傳物質,此外,在細胞質中的線粒體和葉綠體也有少量DNA。20、核糖核酸:另一類是含有核糖的,叫做核糖核酸,簡稱RNA。
公式:1、肽鍵數=脫去水分子數=氨基酸數目—肽鏈數。2、基因(或DNA)的鹼基:信使RNA的鹼基:氨基酸個數=6:3:1
語句:1、自由水和結合水是可以相互轉化的,如血液凝固時,部分自由水轉化為結合水。自由水/結合水的值越大,新陳代謝越活躍。2、能源物質系列:生物體的能源物質是糖類、脂類和蛋白質;糖類是細胞的主要能源物質,是生物體進行生命活動的主要能源物質;生物體內的主要貯藏能量的物質是脂肪;動物細胞內的主要貯藏能量的物質是糖元;植物細胞內的主要貯藏能量的物質是澱粉;生物體內的直接能源物質是ATP(A-P~P~P);生物體內的最終能量來源是太陽能。3、糖類、脂類、蛋白質、核酸四種有機物共同的元素是C、H、O三種元素,蛋白質必須有N,核酸必須有N、P;蛋白質的基本組成單位是氨基酸,核酸的基本組成單位是核苷酸。(例: DNA、葉綠素、纖維素、胰島素、腎上腺皮質激素在化學成分中共有的元素是C、H、O)。4、蛋白質的四大特點:①相對分子質量大;②分子結構復雜;③種類極其多樣;④功能極為重要。5、蛋白質結構多樣性:①氨基酸種數不同,②氨基酸數目不同,③氨基酸排列次序不同,④肽鏈空間結構不同。6、蛋白質分子結構的多樣性決定了蛋白質分子功能多樣性,概括有:①構成細胞和生物體的重要物質如肌動蛋白;②催化作用:如酶;③調節作用:如胰島素、生長激素;④免疫作用:如抗體,抗原(不是蛋白質);運輸作用:如紅細胞中的血紅蛋白。注意:蛋白質分子的多樣性是有核酸控制的。7、一切生命活動都離不開蛋白質,蛋白質是生命活動的承擔者。核酸是一切生物的遺傳物質。是遺傳信息的載體,存在於一切細胞中(不是存在於一切生物中),對於生物的遺傳、變異和蛋白質的合成具有重要作用。8、組成核酸的基本單位是核苷酸,是由一分子磷酸、一分子核糖、一分子含氮鹼基組成。組成DNA的核苷酸叫做脫氧核苷酸,組成RNA的核苷酸叫做核糖核苷酸。兩者組分相同的是都含有磷酸基團、腺嘌呤、鳥嘌呤和胞嘧啶三種含氮鹼基。
名詞:1、顯微結構:在普通光學顯微鏡中能夠觀察到的細胞結構。2、亞顯微結構:在普通光學顯微鏡下觀察不能分辨清楚的細胞內各種微細結構。3、原核細胞:細胞較小,沒有成形的細胞核。組成核的物質集中在核區,沒有染色體,DNA 不與蛋白質結合,無核膜、無核仁;細胞器只有核糖體;有細胞壁,成分與真核細胞不同。4、真核細胞:細胞較大,有真正的細胞核,有一定數目的染色體,有核膜、有核仁,一般有多種細胞器。5、原核生物:由原核細胞構成的生物。如:藍藻、綠藻、細菌(如硝化細菌、乳酸菌、大腸桿菌、肺炎雙球菌)、放線菌、支原體等都屬於原核生物。6、真核生物:由真核細胞構成的生物。如:酵母菌、黴菌、食用菌、衣藻、變形蟲、草里履蟲、瘧原蟲等。7、細胞膜的選擇透過性:這種膜可以讓水分子自由通過,細胞要選擇吸收的離子和小分子(如:氨基酸、葡萄糖)也可以通過,而其它的離子、小分子和大分子(如:信使RNA、蛋白質、核酸、蔗糖)則不能通過。8、膜蛋白:指細胞內各種膜結構中蛋白質成分。9、載體蛋白:膜結構中與物質運輸有關的一種跨膜蛋白質,細胞膜中的載體蛋白在協助擴散和主動運輸中都有特異性。10、細胞質:在細胞膜以內、細胞核以外的原生質,叫做細胞質。細胞質主要包括細胞質基質和細胞器。11、細胞質基質:細胞質內呈液態的部分是基質。是細胞進行新陳代謝的主要場所。12、細胞器:細胞質中具有特定功能的各種亞細胞結構的總稱。13、細胞壁:植物細胞的外面有細胞壁,主要化學成分是纖維素和果膠,其作用是支持和保護。其性質是全透的。
語句: 1、地球上的生物,除了病毒以外,所有的生物體都是由細胞構成的。(生物分類也就有了細胞生物和非細胞生物之分)。2、細胞膜由雙層磷脂分子鑲嵌了蛋白質。蛋白質可以以覆蓋、貫穿、鑲嵌三種方式與雙層磷脂分子相結合。磷脂雙分子層是細胞膜的基本支架,除保護作用外,還與細胞內外物質交換有關。3、細胞膜的結構特點是具有一定的流動性;功能特性是選擇透過性。如:變形蟲的任何部位都能伸出偽足,人體某些白細胞能吞噬病菌,這些生理的完成依賴細胞膜的流動性。4、物質進出細胞膜的方式:a、自由擴散:從高濃度一側運輸到低濃度一側;不消耗能量。例如:H2O、O2、CO2、甘油、乙醇、苯等。b、主動運輸:從低濃度一側運輸到高濃度一側;需要載體;需要消耗能量。例如:葡萄糖、氨基酸、無機鹽的離子(如K+ )。c、協助擴散:有載體的協助,能夠從高濃度的一邊運輸到低濃度的一邊,這種物質出入細胞的方式叫做協助擴散。如:葡萄糖進入紅細胞。5、線粒體:呈粒狀、棒狀,普遍存在於動、植物細胞中,內有少量DNA和RNA內膜突起形成嵴,內膜、基質和基粒中有許多種與有氧呼吸有關的酶,線粒體是細胞進行有氧呼吸的主要場所,生命活動所需要的能量,大約95%來自線粒體。6、葉綠體:呈扁平的橢球形或球形,主要存在植物葉肉細胞里,葉綠體是植物進行光合作用的細胞器,含有葉綠素和類胡蘿卜素,還有少量DNA和RNA,葉綠素分布在基粒片層的膜上。在片層結構的膜上和葉綠體內的基質中,含有光合作用需要的酶。7、內質網:由膜結構連接而成的網狀物。功能:增大細胞內的膜面積,使膜上的各種酶為生命活動的各種化學反應的正常進行,創造了有利條件。8、核糖體:橢球形粒狀小體,有些附著在內質網上,有些游離在細胞質基質中。是細胞內將氨基酸合成蛋白質的場所。9、高爾基體:由扁平囊泡、小囊泡和大囊泡組成,為單層膜結構,一般位於細胞核附近的細胞質中。在植物細胞中與細胞壁的形成有關,在動物細胞中與分泌物的形成有關,並有運輸作用。10、中心體:每個中心體含兩個中心粒,呈垂直排列,存在動物細胞和低等植物細胞,位於細胞核附近的細胞質中,與細胞的有絲分裂有關。11、液泡:是細胞質中的泡狀結構,表面有液泡膜,液泡內有細胞液。化學成分:有機酸、生物鹼、糖類、蛋白質、無機鹽、色素等。有維持細胞形態、儲存養料、調節細胞滲透吸水的作用。12、與胰島素合成、運輸、分泌有關的細胞器是:核糖體、內質網、高爾基體、線粒體。在胰島素的合成過程中,合成的場所是核糖體,胰島素的運輸要通過內質網來進行,胰島素在分泌之前還要經高爾基體的加工,在合成和分泌過程中線粒體提供能量。13、在真核細胞中,具有雙層膜結構的細胞器是:葉綠體、線粒體;具有單層膜結構的細胞器是:內質網、高爾基體、液泡;不具膜結構的是:中心體、核糖體。另外,要知道細胞核的核膜是雙層膜,細胞膜是單層膜,但它們都不是細胞器。植物細胞有細胞壁和是葉綠體,而動物細胞沒有,成熟的植物細胞有明顯的液泡,而動物細胞中沒有液泡;在低等植物和動物細胞中有中心體,而高等植物細胞則沒有;此外,高爾基體在動植物細胞中的作用不同。14、細胞核的簡介:(1)存在絕大多數真核生物細胞中;原核細胞中沒有真正的細胞核;有的真核細胞中也沒有細胞核,如人體內的成熟的紅細胞。(2)細胞核結構:a、核膜:控制物質的進出細胞核。說明:核膜是和內質網膜相連的,便於物質的運輸;在核膜上有許多酶的存在,有利於各種化學反應的進行。
b、核孔:在核膜上的不連貫部分;作用:是大分子物質進出細胞核的通道。c、核仁:在細胞周期中呈現有規律的消失(分裂前期)和出現(分裂末期),經常作為判斷細胞分裂時期的典型標志。d、染色質:細胞核中易被鹼性染料染成深色的物質。提出者:德國生物學家瓦爾德爾提出來的。組成主要由DNA和蛋白質構成。染色質和染色體是同一種物質在不同時期的細胞中的兩種不同形態!(3)細胞核的功能:是遺傳物質儲存和復制的場所;是細胞遺傳特性和代謝中心活動的控制中心。15、原核細胞與真核細胞的主要區別是有無成形的細胞核,也可以說是有無核膜,因為有核膜就有成形的細胞核,無核膜就沒有成形的細胞核。這里有幾個問題應引起注意:(1)病毒既不是原核生物也不是真核生物,因為病毒沒有細胞結構。(2)原生動物(如草履蟲、變形蟲等)是真核生物。(3)不是所有的菌類都是原核生物,細菌(如硝化細菌、乳酸菌等)是原核生物,而真菌(如酵母菌、黴菌、蘑菇等)是真核生物。16、在線粒體中,氧是在有氧呼吸第三個階段兩個階段產生的氫結合生成水,並放出大量的能量;光合作用的暗反應中,光反應產生的氫參與暗反應中二氧化碳的還原生成水和葡萄糖;蛋白質是由氨基酸在核糖體上經過脫水縮合而成,有水的生成。
第二節、細胞增殖
名詞:1、染色質:在細胞核中分布著一些容易被鹼性染料染成深色的物質,這些物質是由DNA和蛋白質組成的。在細胞分裂間期,這些物質成為細長的絲,交織成網狀,這些絲狀物質就是染色質。2、染色體:在細胞分裂期,細胞核內長絲狀的染色質高度螺旋化,縮短變粗,就形成了光學顯微鏡下可以看見的染色體。3、姐妹染色單體:染色體在細胞有絲分裂(包括減數分裂)的間期進行自我復制,形成由一個著絲點連接著的兩條完全相同的染色單體。(若著絲點分裂,則就各自成為一條染色體了)。每條姐妹染色單體含1個DNA,每個DNA一般含有2條脫氧核苷酸鏈。4、有絲分裂:大多數植物和動物的體細胞,以有絲分裂的方式增加數目。有絲分裂是細胞分裂的主要方式。親代細胞的染色體復制一次,細胞分裂兩次。5、細胞周期:連續分裂的細胞,從一次分裂完成時開始,到下一次分裂完成時為止,這是一個細胞周期。一個細胞周期包括兩個階段:分裂間期和分裂期。分裂間期:從細胞在一次分裂結束之後到下一次分裂之前,叫分裂間期。分裂期:在分裂間期結束之後,就進入分裂期。分裂間期的時間比分裂期長。6、紡錘體:是在有絲分裂中期細胞質中出現的結構,它和染色體的運動有密切關系。7、赤道板:細胞有絲分裂中期,染色體的著絲粒准確地排列在紡錘體的赤道平面上,因此叫做赤道板。8、無絲分裂:分裂過程中沒有出現紡錘體和染色體的變化。例如,蛙的紅細胞。
公式:1)染色體的數目=著絲點的數目。2)DNA數目的計算分兩種情況:①當染色體不含姐妹染色單體時,一個染色體上只含有一個DNA分子;②當染色體含有姐妹染色單體時,一個染色體上含有兩個DNA分子。
語句:1、染色質、染色體和染色單體的關系:第一,染色質和染色體是細胞中同一種物質在不同時期細胞中的兩種不同形態。第二,染色單體是染色體經過復制(染色體數量並沒有增加)後仍連接在同一個著點的兩個子染色體(姐妹染色單體);當著絲點分裂後,兩染色單體就成為獨立的染色體(姐妹染色體)。2、染色體數、染色單體數和DNA分子數的關系和變化規律:細胞中染色體的數目是以染色體著絲點的數目來確定的,無論一個著絲點上是否含有染色單體。在一般情況下,一個染色體上含有一個 DNA分子,但當染色體(染色質)復制後且兩染色單體仍連在同一著絲點上時,每個染色體上則含有兩個DNA分子。3、植物細胞有絲分裂過程:(1)分裂間期:完成DNA分子的復制和有關蛋白質的合成。結果:每個染色體都形成兩個姐妹染色單體,呈染色質形態。(2)細胞分裂期:A、分裂前期:①出現染色體、出現紡錘體②核膜、核仁消失;記憶口訣:膜仁消失兩體現(說明是染色體出現和紡錘體形成 )B、分裂中期:①所有染色體的著絲點都排列在赤道板上②在分裂中期染色體的形態和數目最清晰,觀察染色體形態數目最好的時期;記憶口訣:著絲點在赤道板。C、分裂後期:①著絲點一分為二,姐妹染色單體分開,成為兩條子染色體,並分別向兩極移動②染色單體消失,染色體數目加倍;記憶口訣:著絲點裂體平分。D、分裂末期:①染色體變成染色質,紡錘體消失②核膜、核仁重現③在赤道板位置出現細胞板。記憶口訣:膜仁重現新壁成。4、動、植物細胞有絲分裂的異同:①相同點是染色體的行為特徵相同,染色體復制後平均分配到兩個子細胞中去。②區別:前期(紡錘體的形成方式不同):植物細胞由細胞兩極發出紡錘絲形成紡錘體;動物細胞由細胞的兩組中心粒發出星射線形成紡錘體。末期(細胞質的分裂方式不同):植物細胞在赤道板位置出現細胞板形成細胞壁將細胞質分裂為二;動物細胞:細胞膜從中部向內凹陷將細胞質縊裂為二。5、DNA分子數目的加倍在間期,數目的恢復在末期;染色體數目的加倍在後期,數目的恢復在末期;染色單體的產生在間期,出現在前期,消失在後期。6、有絲分裂中染色體、DNA分子數各期的變化:①染色體(後期暫時加倍):間期2N,前期2N,中期2N,後期4N,末期2N;②染色單體(染色體復制後,著絲點分裂前才有):間期0-4N,前期4N,中期4N,後期0,末期0。③DNA數目(染色體復制後加倍,分裂後恢復):間期2a -4a,前期4a,中期 4a,後期 4a,末期 2a;④同源染色體(對)(後期暫時加倍):間期N前期N中期 N後期2N末期N。7、細胞以分裂方式進行增殖,細胞增殖是生物體生長、發育、繁殖和遺傳的基礎。細胞有絲分裂的重要意義(特徵),是將親代細胞的染色體經過復制以後,精確地平均分配到兩個子細胞中去,因而在生物的親代和子代間保持了遺傳性狀的穩定性,對生物的遺傳具重要意義。
第三節、細胞的分化
名詞:1、細胞的分化:在個體發育過程中,相同細胞(細胞分化的起點)的後代,在細胞的形態、結構和生理功能上發生的穩定性差異的過程。 2、細胞全能性:一個細胞能夠生長發育成整個生物的特性。3、細胞的癌變:在生物體的發育中,有些細胞受到各種致癌因子的作用,不能正常的完成細胞分化,變成了不受機體控制的、能夠連續不斷的分裂的惡性增殖細胞。4、細胞的衰老是細胞生理和生化發生復雜變化的過程,最終反應在細胞的形態、結構和生理功能上。
語句:1、細胞的分化:a、發生時期:是一種持久性變化,它發生在生物體的整個生命活動進程中,胚胎時期達到最大限度。b、細胞分化的特性:穩定性、持久性、不可逆性、全能性。c、意義:經過細胞分化,在多細胞生物體內就會形成各種不同的細胞和組織;多細胞生物體是由一個受精卵通過細胞增殖和分化發育而成,如果僅有細胞增殖,沒有細胞分化,生物體是不能正常生長發育的。2、細胞的癌變a、癌細胞的特徵:能夠無限增殖;形態結構發生了變化;癌細胞表面發生了變化。b、致癌因子:物理致癌因子:主要是輻射致癌;化學致癌因子:如苯、坤、煤焦油等;病毒致癌因子:能使細胞癌變的病毒叫腫瘤病毒或致癌病毒。c、機理是癌細胞是由於原癌基因激活,細胞發生轉化引起的。d、預防:避免接觸致癌因子;增強體質,保持心態健康,養成良好習慣,從多方面積極採取預防措施。3、細胞衰老的主要特徵:a.水分減少,細胞萎縮,體積變小,代謝減慢;b、有些酶活性降低(細胞中酪氨酸酶活性降低會導致頭發變白);c.色素積累(如:老年斑);d.呼吸減慢,細胞核增大,染色質固縮,染色加深;e.細胞膜通透功能改變,物質運輸能力降低。4、從理論上講,生物體的每一個活細胞都應該具有全能性。在生物體內,細胞並沒有表現出全能性,而是分化成為不同的細胞、器官,這是基因在特定的時間、空間條件下選擇性表達的結果,當植物細胞脫離了原來所在植物體的器官或組織而處於離體狀態時,在一定的營養物質、激素和其他外界的作用條件下,就可能表現出全能性,發育成完整的植株。
⑨ 高中生物學些什麼內容
高中生物大致學習的內容有:
細胞分子組成與結構、細胞的代謝、細胞的生命歷程、遺傳、變異、育種、生命活動的調節、生物與環境、生物實驗、微生物工程、基因工程、細胞工程、生態工程等內容。
⑩ 高中生物學什麼內容
主要分為幾大塊:
1、細胞的結構基礎
2、細胞的生理:包括光合與呼吸等
3、遺傳學:包括遺傳的分子基礎、遺傳定律、遺傳病及優生
4、變異和進化:生物的變異和育種,生物的進化
5、生命活動的調節:包括人體的穩態和免疫、動物和人體的生命活動調節、植物激素調節
6、生物與環境:主要是生態學、生態農業
7、實驗等等
8、選修一:生物技術實踐
9、選修三:現代生物專題:基因和細胞工程、胚胎工程、生物技術安全性
(10)遺傳的分子基礎包括哪些內容擴展閱讀:
高中生物學習的注意事項:
高考要求中,生物學實驗有15個,實習有5個,研究性課題有7個。在實驗復習時,要求學生要認真領會每個實驗的設計意圖和總結實驗方法。
生物高考中要求考生能夠設計簡單的生物學實驗,掌握基本的實驗操作;能夠對實驗結果進行解釋和分析,也包括判斷實驗結果和推導實驗結論等內容;能夠設計實驗方案。
高考實驗題力圖通過筆試的形式考查學生的實驗能力,同時力圖通過一些簡單的實驗設計來鑒別考生獨立解決問題的能力和知識遷移能力。
參考資料:網路-高中生物